Advertisement

Archiv für dermatologische Forschung

, Volume 251, Issue 3, pp 169–180 | Cite as

Proliferation pattern of hamster melanoma cells cultured in diffusion chambers in pre-Immunized hosts

  • George Schieferstein
  • Ole Didrik Lærum
Article
  • 21 Downloads

Summary

Fortner M Mel 1 melanoma cells from the Golden Hamster were capable of exponential proliferation during intraperitoneal diffusion chamber culture in xenogenic host animals (Balb/c mice, BD IX and Marshall rats). When the host animals had been preimmunized with these melanoma cells, rapid cell lysis was observed in the chambers within 4 hrs after implantation. The cell numbers were reduced to about 1–10% of the inoculum. At this level the cell numbers persisted for several days, as opposed to control cultures in untreated hosts, where the cells proliferated rapidly.

After 6–10 days the cell numbers in chambers from immunized hosts slowly increased in spite of a high level of cytotoxicity in the serum of the animals. The same pattern was seen after previous immunization with hamster lymphocytes, indicating that the antibodies were directed against a common antigen for melanoma cells and lymphocytes in hamsters.

The diffusion chamber method appears to be a useful system for the study of a pure humoral immune reaction against tumour cells, and especially for investigation of the phenomenon that some tumour cells are able to escape a strong humoral cytotoxic effect from host animals.

Keywords

Melanoma Cell Host Animal Diffusion Chamber Previous Immunization Intraperitoneal Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Hamster-Melanomzellen (M Mel 1 Fortner) zeigten eine exponentielle Proliferation während des Wachstums in intraperitonealen Diffusionskammern in xenogenen Wirttieren (Balb/c-Mäuse, BD IX- und Marshall-Ratten). Wurden die Wirtstiere mit Melanomzellen präimmunisiert, so zeigte sich innerhalb von 4 Std nach Implantation der Diffusionskammern eine rasch verlaufende Zell-Lysis. Die Zellzahl sank auf 1–10% der Ausgangswerte. Im Gegensatz zu den nichtbehandelten Kontrollen, die eine rasch verlaufende Zellproliferation aufwiesen, blieb die Zellzahl bei den präimmunisierten Tieren über mehrere Tage niedrig.

Nach 6 bis 10 Tagen begannen sich die implantierten Tumorzellen bei den immunisierten Wirtstieren trotz einer hohen Cytotoxicität im Serum der Tiere langsam zu vermehren. Ein gleiches Verhalten konnte beobachtet werden, wenn die Tiere vorher mit Hamster-Lymphocyten immunisiert wurden. Diese Beobachtung weist darauf hin, daß die Antikörper gegen ein gemeinsames Antigen (Melanomzellen und Hamster-Lymphocyten) gerichtet sind.

Die Diffusionskammermethode erweist sich als ein brauchbares System, das Untersuchungen einer ausschließlich humoralen Immunantwort gegen Tumorzellen erlaubt. Darüber hinaus wird es durch diese Methode möglich, die Frage, warum bestimmte Tumorzellen trotz hoher humoraler Toxicität in der Proliferation nicht gehemmt werden, genauer zu untersuchen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Algire, G. H., Borders, M. L., Evans, V. J.: Studies of heterografts in diffusion chambers in mice. J. nat. Cancer Inst.20, 1187–1195 (1958).Google Scholar
  2. 2.
    Algire, G. H., Weaver, J. M., Prehn, R. T.: Growth of cellsin vivo in diffusion chambers I. Survival of homografts in immunized mice. J. nat. Cancer Inst.15, 493–507 (1955)Google Scholar
  3. 3.
    Ambrose, K. R., Anderson, N. G., Coggin, J. H., Jr.: Cytostatic antibody and SV40 tumour immunity in hamsters. Nature (Lond.)233, 321–324 (1971)Google Scholar
  4. 4.
    Ambrose, K. R., Candler, E. L., Coggin, J. H., Jr.: Characterization of tumour — specific transplantation immunity reactions in immunodiffusion chambersin vivo. Proc. Soc. exp. Biol. (N.Y.)132, 1013–1020 (1969)Google Scholar
  5. 5.
    Amos, D. B., Wakefield, J. D.: Growth of mouse ascites tumour cells in diffusion chambers I. Studies of growth rate of cells and of the rate of entry of antibody. J. nat. Cancer Inst.21, 657–670 (1958)Google Scholar
  6. 6.
    Amos, D. B., Wakefield, J. D.: Growth of mouse ascites tumour cells in diffusion chambers II. Lysis and growth inhibition by diffussible isoantibody. J. nat. Cancer Inst.22, 1077 to 1092 (1959)Google Scholar
  7. 7.
    Benestad, H. B.: Formation of granulocytes and macrophages in diffusion chamber cultures of mouse blood leucocytes. Scand. J. Haemat.7, 279–288 (1970)Google Scholar
  8. 8.
    Capalbo, E. E., Albright, J. F., Bennett, W. E.: Evaluation of the diffusion chamber culture technique for study of the morphological and functional characteristics of lymphoid cells during antibody production. J. Immunol.92, 243–251 (1964)Google Scholar
  9. 9.
    Criswell, B. S., Butler, W. T., Rossen, R. D., Knight, V.: Murine malaria: the role of humoral factors and macrophages in destruction of parasitized erythrocytes. J. Immunol.107, 212–221 (1971)Google Scholar
  10. 10.
    Druckrey, H.: Genotypes and phenotypes of ten inbred strains of BD-rats. Arzneimittel-Forsch.21, 1274–1278 (1971)Google Scholar
  11. 11.
    Dittrich, W., Göhde, W.: Impulsfluorometrie bei Einzelzellen in Suspension. Z. Naturforsch.24b, 360–361 (1969)Google Scholar
  12. 12.
    Gabourel, J. D.: Cell culturein vivo. II. Behavior of L-fibroblasts in diffusion chambers in resistant hosts. Cancer Res.21, 506–509 (1961)Google Scholar
  13. 13.
    Hartveit, F.: Cellular injury in untreated Ehrlich ascites carcinoma. Brit. J. Cancer16, 556–561 (1962)Google Scholar
  14. 14.
    Hartveit, F.: The demonstration of an inhibitor of oncolysis in the ascitic fluid from the Ehrlich ascites carcinoma. Brit. J. Cancer18, 726–729 (1964)Google Scholar
  15. 15.
    Hartveit, F.: Inhibition of lysis of sensitised tumour cells in the presence of complement. Brit. J. Cancer19, 589–593 (1965)Google Scholar
  16. 16.
    Hartveit, F.: The growth of Ehrlich's ascites carcinoma in C3H mice and in mice of an unrelated closed colony. Brit. J. Cancer20, 818–824 (1966)Google Scholar
  17. 17.
    Hrśak, I., Marotti, T.: Immunosuppression mediated by Ehrlich ascites fluid. Europ. J. Cancer9, 717–724 (1973)Google Scholar
  18. 18.
    Kahan, B. D., Reisfeld, R. A.: Transplantation antigens. Science164, 514–521 (1969)Google Scholar
  19. 19.
    Kreider, J. W., Choff, W. H., Lengle, N.: A diffusion chamber method for the detection of lymphocyte-mediated cytotoxicity of 125 IUDR-labeled tumour cells. Transplantation14, 278–283 (1972)Google Scholar
  20. 20.
    Lærum, O. D., Grüneisen, A., Rajewsky, M. F.: Proliferative properties of malignant cell populations cultured in intraperitoneal diffusion chambers. Europ. J. Cancer9, 533–541 (1973)Google Scholar
  21. 21.
    Nettesheim, P., Makinodan, T., Chadwick, C. J.: Improved diffusion chamber cultures for cytokinetic analysis of antibody response. Immunology11, 427–439 (1966)Google Scholar
  22. 22.
    Ott, F.: Das Hamstermelanom M Mel 1 als Ascitestumor. Arch. klin. exp. Derm.234, 362–383, (1969)Google Scholar
  23. 23.
    Parmiani, G., Carbone, G., Lembo, R.: Immunogenic strength of sarcomas induced by methylcholanthrene in Millipore filter diffusion chambers. Cancer Res.33, 750–754 (1973)Google Scholar
  24. 24.
    Rappaport, C., Howze, G. B.: Dissociation of adult mouse liver by sodium tetraphenylboron, a potassium complexing agent. Proc. Soc. exp. Biol. (N. Y.)121, 1010–1028 (1966)Google Scholar
  25. 25.
    Schieferstein, G., Lærum, O. D.: Diffusion chamber culture of hamster melanoma cellsin vivo. Culture characteristics in iso- and heterologous host animals. Arch. Derm. Forsch.249, 131–140 (1974)Google Scholar
  26. 26.
    Schlesinger, M.: Antigenic modulation. Biomedicine18, 437–440 (1973)Google Scholar
  27. 27.
    Thunold, S.: Globulin coatingin vivo of Ehrlich's ascites carcinoma cells. Transplantation6, 716–727 (1968)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • George Schieferstein
    • 1
  • Ole Didrik Lærum
    • 1
  1. 1.Max-Planck-Institut für Virusforschung, Abt. für Physikalische BiologieUniversitäts-HautklinikTübingenFRG

Personalised recommendations