Biochemical Genetics

, Volume 26, Issue 3–4, pp 239–248 | Cite as

The cat hemoglobin polymorphism: Southern blot analysis of theβ-globin gene region from cats of various Hb A/Hb B phenotypes

  • Jane Kasten-Jolly
  • Edathara C. Abraham


The molecular basis for the genetic control of variable proportions of the two cat hemoglobins Hb A(α2β 2 A ) and Hb B (α2β 2 B ) was investigated. Ratios of Hb A/Hb B vary between 50/50 and 90/10 among members of the mongrel cat population, with clusters around 50, 35, and 10% Hb B. Genomic DNA from cats of 50/50, 70/30, and 90/10 phenotypes were cut by restriction endonucleasesHindIII,EcoRI,BamHI,Bg1II,and Pst1 and hybridized to a fragment of the human β-globin gene. The results of the Southern blots suggested a pattern of homozygote, heterozygote, homozygote for the respective cat phenotypes, 50/50, 70/30, and 90/10. Therefore, the cat hemoglobin polymorphism seems to result from the possible combinations of an allelic gene pair.

Key words

cat hemoglobins polymorphism DNA restriction endonuclease gene expression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blattner, F. R., Blechl, A. E., Denniston-Thompson, K., Faber, H. E., Richards, J. E., Slightom, J. L., Tucker, P. W., and Smithies, O. (1978). Cloning human fetal γ-globin and mouse α type globin DNA: Preparation and screening of shotgun collections.Science 2021279.Google Scholar
  2. Boyum, A. (1968). Isolation of mononuclear cells and granulocytes from human blood.Scand. J. Clin. Lab. Invest. 97 (Suppl.):77.Google Scholar
  3. Hardison, R. C., Butler, E. T., III, Lacy, E., Maniatis, T., Rosenthal, N., and Efstratiadis, A. (1979). The structure and transcription of four linked rabbit β-like globin genes.Cell 181285.Google Scholar
  4. Hill, A., Hardies, S. C., Phillips, S. J., Davies, M. G., Hutchison, C. A., III, and Edgell, M. H. (1984). Two mouse early embryonic β-globin gene sequences: Evolution of the nonadult β-globins.J. Biol. Chem. 2593739.Google Scholar
  5. Jahn, C. L., Hutchison, C. A., III, Phillips, S. J., Weaver, S., Haigwood, N. L., Voliva, C. F., and Edgell, M. H. (1980). DNA sequence organization of the β-globin complex in the BALB/c mouse.Cell 21159.Google Scholar
  6. Kasten-Jolly, J., and Taketa, F. (1984). Biosynthesis of cat hemoglobin: Translation of poly(A)-RNA from animals of various Hb A/Hb B phenotypes.Biochem. Genet. 22901.Google Scholar
  7. Lawn, R. M., Efstratiadis, A., O'Connell, C., and Maniatis, T. (1980). The nucleotide sequence of the human β-globin gene.Cell 21647.Google Scholar
  8. Lessard, J. L., and Taketa, F. (1969). Multiple hemoglobins in fetal, newborn, and adult cat.Biochim. Biophys. Acta 175441.Google Scholar
  9. Maniatis, T., Fritsch, E., and Sambrook, J. (1982).Molecular Cloning: A Laboratory Manual Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  10. O'Brien, S. J., Haskins, M. E., Winkler, C. A., Nash, W. C., and Patterson, D. F. (1986). Chromosomal mapping of beta-globin and albino loci in the domestic cat.J. Hered. 77374.Google Scholar
  11. Poncz, M., Solwiejczyk, D., Harpel, B., Mory, Y., Schwartz, E., and Surrey, S. (1982). Construction of human gene libraries from small amounts of peripheral blood: Analysis of β-like globin genes.Hemoglobin 627.Google Scholar
  12. Putz, G. R. (1974).Feline Hemoglobins: Genetics, Biosynthesis, and Properties PhD. dissertation, Marquette University, Milwaukee, Wis.Google Scholar
  13. Schimenti, J. C., and Duncan, C. H. (1984). Ruminant globin gene structures suggest evolutionary role for Alu-type repeats.Nucl. Acid Res. 121641.Google Scholar
  14. Schon, E. A., Cleary, M. L., Haynes, J. R., and Lingrel, J. B. (1981). Structure and evolution of goat γ,-βC and βA-globin genes: Three developmentally regulated genes contain inserted elements.Cell 27359.Google Scholar
  15. Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis.J. Mol. Biol. 98503.Google Scholar
  16. Spencer, N. (1979). Genetics of cat hemoglobins: A quantitative polymorphism.Biochem. Genet. 17747.Google Scholar
  17. Taketa, F., Smits, M. R., and Lessard, J. L. (1968). Hemoglobin heterogeneity in the cat.Biochem. Biophys. Res. Commun. 30219.Google Scholar
  18. Taketa, F., Mauk, A. G., Mauk, M. R., and Brimhall, B. (1977). The tryptic peptide composition of the β chains of hemoglobins A and B of the domestic cat (Felis catus).J. Mol. Evol. 9261.Google Scholar
  19. Taketa, F., Chen, J. Y., and Palosaari, N. (1978). Homoglobin A and B of the cat: Occurrence in the same cell.Hemoglobin 2371.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Jane Kasten-Jolly
    • 1
    • 2
  • Edathara C. Abraham
    • 1
  1. 1.Department of Cell and Molecular BiologyMedical College of GeorgiaAugusta
  2. 2.Department of Microbiology and ImmunologyEast Carolina University, School of MedicineGreenville

Personalised recommendations