Biochemical Genetics

, Volume 28, Issue 3–4, pp 151–171 | Cite as

Mutations affecting phenol oxidase activity inDrosophila: quicksilver andtyrosinase-1

  • Ellen Steward Pentz
  • Bruce C. Black
  • Theodore R. F. Wright


The complex enzyme phenol oxidase plays a major role in sclerotization and melanization of cuticle in insects. Production of active enzyme from the inactive proenzyme involves at least six protein components inDrosophila. We examine here the biochemical phenotype of two loci that affect phenol oxidase activity—quicksilver (qs; 1–39.5) andtyrosinase-1 (tyr-1; 2–54.5). Three mutations isolated by different procedures in three different laboratories are alleles at thequicksilver locus. The effects of these mutations have been monitored by means of enzyme assaysin vitro and in polyacrylamide gels and by measurement of catecholamine pool sizes. The activity of all three active enzyme components (A1, A2, and A3) is reduced inqs mutants. The activated enzyme of oneqs allele is thermolabile, while its activator is normal. Deletion and genetic mapping placetyr-1 nearpurple (pr; 2–54.5). Enzyme activity is reduced to 10% of normal but is not thermolabile and the activator is normal. The activity of all three A components is reduced. The diphenol oxidase activity in double mutant combinations shows that these mutations andDox-A2 (Pentzet al., 1986) affect this enzyme in different ways.

Key words

phenol oxidase catecholamine sclerotization tyr-1 quicksilver 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Black, B. C., Pentz, E. S., and Wright, T. R. F. (1987). The alpha methyl dopa hypersensitive gene,1(2)amd, and two adjacent genes inDrosophila melanogaster: Physical location and direct effects ofamd on catecholamine metabolism.Mol. Gen. Genet. 209306.Google Scholar
  2. Budnik, V., and White, K. (1987). Genetic dissection of dopamine and serotonin synthesis in the nervous system ofDrosophila melanogaster.J. Neurogenet. 4309.Google Scholar
  3. Carpenter, J. M. (1950). A new semi-synthetic food medium forDrosophila.Dros. Inf. Serv. 2496.Google Scholar
  4. Craymer, L. (1984). New mutants-Drosophila melanogaster.Dros. Inf. Serv. 60234.Google Scholar
  5. Craymer, L., and Roy, E. (1980). New mutants-Drosophila melanogaster.Dros. Inf. Serv. 55200.Google Scholar
  6. Deng, Y., and Rizki, T. M. (1989). Genetic and developmental analysis of the A1 phenol oxidase ofDrosophila. Proceedings of the XVIth International Congress of Genetics.Genome 31192.Google Scholar
  7. Ganetzky, B. (1977). On the components of segregation distortion inDrosophila melanogaster.Genetics 86321.Google Scholar
  8. Hiruma, K., and Riddiford, L. M. (1988). Granular phenol oxidase involved in cuticular melanization in the tobacco hornworm: Regulation of its synthesis in the epidermis by juvenile hormone.Dev. Biol. 13087.Google Scholar
  9. Horowitz, N. H., and Fling, M. (1955). The autocatalytic production of tyrosine in extracts ofDrosophila melanogaster In McElroy, W. E., and Glass, H. B. (eds.),Amino Acid Metabolism Johns Hopkins University Press, Baltimore.Google Scholar
  10. Huntley, M. D. (1978).The Genetics of Catecholamine Metabolizing Enzymes in Drosophila melanogaster Ph.D. dissertation, University of Virginia, Charlottesville.Google Scholar
  11. Iwama, R., and Ashida, M. (1986). Biosynthesis of prophenol oxidase in hemocytes of larval hemolymph of the silkworm,Bombyx mori.Insect Biochem. 16547.Google Scholar
  12. Lewis, H. W. (1960). Genetic control of dopa oxidase activity inDrosophila melanogaster. I. Analysis of wild type,sable, suppressor-of-sable and suppressedsable strains.Genetics 451217.Google Scholar
  13. Lewis, H. W., and Lewis, H. S. (1961). Genetic control of dopa oxidase activity inDrosophila melanogaster. II. Regulating mechanisms and inter- and intrastrain heterogeneity.Proc. Natl. Acad. Sci. USA 4778.Google Scholar
  14. Lewis, H. W., and Lewis, H. S. (1963). Genetic regulation of dopa oxidase activity inDrosopila.Ann. N.Y. Acad. Sci. 100827.Google Scholar
  15. Lindsley, D. L., and Grell, E. H. (1968). Genetic variations ofDrosophila melanogaster. Carnegie Inst. Wash. Publ. 627.Google Scholar
  16. Lindsley, D. L., and Zimm, G. (1985). The genome ofDrosophila melanogaster. Part 1. Genes A–K.Dros. Inf. Serv. 62. Google Scholar
  17. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. F. (1951). Protein measurement with the folin phenol reagent.J. Biol. Chem. 193265.Google Scholar
  18. Mitchell, H. K. (1966). Phenol oxidases andDrosophila development.J. Insect Physiol. 12755.Google Scholar
  19. Mitchell, H. K., and Weber, U. M. (1965).Drosophila phenol oxidases.Science 148964.Google Scholar
  20. Neckameyer, S., and Quinn, W. C. (1989). Isolation and characterization of the gene for Drosophila tyrosine hydroxylase.Neuron 21167.Google Scholar
  21. Ohnishi, E. (1954). Tyrosinase inDrosophila virilis.Annot. Zool. Jpn. 2733.Google Scholar
  22. Pentz, E. S., Black, B. C., and Wright, T. R. F. (1986). A diphenol oxidase gene is part of a cluster of genes involved in catecholamine metabolism and sclerotization inDrosophila. I. Identification of the biochemical defect inDox-A2 (1(2)37Bf) mutants.Genetics 112823.Google Scholar
  23. Rizki, T. M., and Rizki, R. M. (1985).Dox-3, the structural gene for aDrosophila phenol oxidase.Genetics 110 (Suppl.):s98.Google Scholar
  24. Rizki, T. M., Rizki, R. M., and Bellotti, R. A. (1985). Genetics of aDrosophila phenol oxidase.Mol. Gen. Genet. 2017.Google Scholar
  25. Seybold, W. D., Meltzer, P. S., and Mitchell, H. K. (1975). Phenol oxidase activation inDrosophila: A cascade of reactions.Biochem. Genet. 1385.Google Scholar
  26. Sherald, A. F., (1981). Intergenic suppression of theBlack mutation ofDrosophila melanogaster.Mol. Gen. Genet. 183102.Google Scholar
  27. Valles, A. M., and White, K. (1986) Development of the neurons committed to serotonin differentiation in mutantDrosophila unable to synthesize serotonin.J. Neurosci. 61482.Google Scholar
  28. Warner, C. K., Grell, E. H., and Jacobson, K. B. (1974). Phenol oxidase activity and thelozenge locus ofDrosophila melanogaster.Biochem. Genet. 13353.Google Scholar
  29. Wieschaus, E., Nusslein-Volhard, C., and Jurgens, G. (1984). Mutations affecting the pattern of the larval cuticle inDrosophila melanogaster III. Zygotic loci on the X-chromosome and fourth chromosome.Roux Arch. Dev. Biol. 193296.Google Scholar
  30. Wright, T. R. F., Hodgetts, R. B., and Sherald, A. F. (1976). The genetics of dopa decarboxylase inDrosophila melanogaster I. Isolation and characterization of deficiencies that delete the dopa-decarboxylase-dosage-sensitive region and the α-methyl-dopa-hypersensitive locus.Genetics 84267.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Ellen Steward Pentz
    • 1
  • Bruce C. Black
    • 2
  • Theodore R. F. Wright
    • 1
  1. 1.Department of Biology, Gilmer Hall, and Molecular Biology InstituteUniversity of VirginiaCharlottesville
  2. 2.American Cyanamid Co.Princeton

Personalised recommendations