Biochemical Genetics

, Volume 28, Issue 3–4, pp 137–149 | Cite as

Differentiation of restriction sites in ribosomal DNA in the genusApodemus

  • Hitoshi Suzuki
  • Kimiyuki Tsuchiya
  • Mitsuru Sakaizumi
  • Shigeharu Wakana
  • Osamu Gotoh
  • Naruya Saitou
  • Kazuo Moriwaki
  • Susumu Sakurai


Southern blot analysis of ribosomal DNA (rDNA) from seven species ofApodemus was carried out in order to examine the genetic relationships between the species. Analysis of heterogeneity in rDNA spacers inA. sylvaticus, A. flavicollis, A. semotus, A. agrarius, A. argenteus, A. speciosus, andA. peninsulae, using 13 different restriction enzymes and cloned mouse rDNA probes, revealed that the families of rDNA in these species can be characterized by restriction maps which show the major constituents of rDNA repeating units (repetypes). Based on differences in the arrangement of restriction sites, sequence divergence among the different major repetypes was estimated. Among the seven species ofApodemus examined, the major repetypes ofA. flavicollis andA. sylvaticus were the most closely related, having only 1.0% sequence divergence. These repetypes and those of the remaining five species differ substantially from one another, with 4.3–8.5% divergence.

Key words

wood mice Apodemus ribosomal DNA (rDNA) restriction fragment length polymorphism (RFLP) sequence divergence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnheim, N. (1983). Concerted evolution of multigene families. In Nei, M., and Koehn, R. K. (eds.),Evolution of Genes and Proteins Sinauer, Sunderland, Mass., pp. 38–61.Google Scholar
  2. Arnheim, N., Krystal, M., Schmickel, R., Wilson, G., Ryder, O., and Zimmer, E. (1980). Molecular evidence for genetic exchanges among ribosomal genes on nonhomologous chromosomes in man and apes.Proc. Natl. Acad. Sci. USA 777323.Google Scholar
  3. Bekasova, T. S., Vorontsov, N. N., Korobitsyna, K. V. and Korablev, V. P. (1980). B-chromosomes and comparative karyology of the mice of the genusApodemus.Genetica 52/5333.Google Scholar
  4. Bonhomme, F., Iskandar, D., Thaler L., and Petter, F. (1984). Electromorphs and phylogeny in muroid rodents. In Luckett W. P., and Hartenberger, J. (eds.),Evolutionary Relationships Among Rodents Plenum Press, New York and London, pp. 671–683.Google Scholar
  5. Brown, S. D. M., and Dover, G. A. (1979). Conservation of sequences in related genomes of Apodemus: Constraints on the maintenance of satellite DNA sequences.Nucleic Acids Res. 62423.Google Scholar
  6. Corbet, G. B. (1978).The Mammals of the Palaearctic Region: A Taxonomic Review Cornell University Press, Ithaca, N.Y.Google Scholar
  7. Dover, G. (1982). Molecular drive: A cohesive mode of species evolution.Nature 299111.Google Scholar
  8. Ferris, S. D., Sage, R. D., Prager, E. M., Ritte, U., and Wilson, A. C. (1983). Mitochondrial DNA evolution in mice.Genetics 105681.Google Scholar
  9. Fitch, W. M. (1971). Toward defining the course of evolution: Minimum change for a specific tree topology.Syst. Zool. 20406.Google Scholar
  10. Gebczynski, M., Nielsen, J. T., and Simonsen, V. (1986). An electrophoretic comparison between three sympatric species of rodents from Jutland, Denmark.Hereditas 10455.Google Scholar
  11. Gotoh, O., Hayashi, J., Yonekawa, H., and Tagashira, Y. (1979). An improved method for estimating sequence divergence between related DNAs from changes in restriction endonuclease cleavage sites.J. Mol. Evol. 14301.Google Scholar
  12. Hasegawa, M., Kishino, and Yano, T. (1988). Man's place in Hominoidea as inferred by molecular clocks of DNA.J. Mol. Evol. 26132.Google Scholar
  13. Hillis, D. M. (1987). Molecular versus morphological approaches to systematics.Annu. Rev. Ecol. Syst. 1823.Google Scholar
  14. Hillis, D. M. and Davis, S. K. (1986). Evolution of ribosomal DNA: Fifty million years of recorded history in the frog genusRana.Evolution 401275–1288.Google Scholar
  15. Hillis, D. M., and Davis, S. K. (1988). Ribosomal DNA: Intraspecific polymorphism, concerted evolution, and phylogeny reconstruction.Syst. Zool. 3763.Google Scholar
  16. Imaizumi, Y. (1962). Part 1.Bull. Nat. Sci. Mus. Tokyo 5163.Google Scholar
  17. Imaizumi, Y. (1964). On the species formation of theApodemus speciosus group, with special reference to the importance of relative values in classification. Part 2.7:127.Google Scholar
  18. Jukes, T. H., and Cantor, C. R. (1969). Evolution of protein molecules. In Munro, H. N. (ed.),Mammalian Protein Metabolism. Academic Press, New York, pp. 21–132.Google Scholar
  19. Kobayashi, T., and Hayata I. (1971). Revision of the genusApodemus in Hokkaido.Annot. Zool. Jpn. 44236.Google Scholar
  20. Kominami, R., Urano, Y., Mishima, Y., and Muramatsu, M. (1981). Organization of ribosomal RNA gene repeats of the mouse.Nucleic Acids Res. 93219.Google Scholar
  21. Kominami, R., Mishima, Y., Urano, Y., Sasaki, M., and Muramatsu, M. (1982). Cloning and determination of the transcription termination site of ribosomal RNA gene of the mouse.Nucleic Acids Res. 101963.Google Scholar
  22. Kral, B. (1970). Chromosome studies in two subgenera of the genusApodemus.Zool. Listy 19119.Google Scholar
  23. Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982).Molecular Cloning Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  24. Saitou, N., and Imanishi, T. (1989). Relative efficiencies of the Fitch-Margoliash, maximum-parsimony, maximum-likelihood, minimum-evolution, and neighbor-joining methods of phylogenetic tree construction in obtaining the correct tree.Mol. Biol. Evol. 6514.Google Scholar
  25. Saitou, N., and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees.Mol. Biol. Evol. 4406.Google Scholar
  26. Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis.J. Mol. Biol. 2459.Google Scholar
  27. Suzuki, H., Miyashita, N., Moriwaki, K., Kominami, R., Muramatsu, M., Kanehisa, T., Bonhomme, F., Petras, M. L., Yu, Z., and Lu, D. (1986). Evolutionary implication of heterogeneity of the nontranscribed spacer region of ribosomal DNA repeating units in various subspecies ofMus musculus.Mol. Biol. Evol. 3126.Google Scholar
  28. Suzuki, H., Moriwaki, K., and Nevo, E. (1987). Ribosomal DNA (rDNA) spacer polymorphism in mole rats.Mol. Biol. Evol. 4602.Google Scholar
  29. Tsuchiya, K. (1974). Cytological and biochemical studies ofApodemus speciosus group in Japan.J. Mammal. Soc. Jap. 667.Google Scholar
  30. Wilson, G. N., Knoller, M., Szura, L. L., and Schmickel, R. D. (1984). Individual and evolutionary variation of primate ribosomal DNA transcription initiation regions.Mol Biol. Evol. 1221.Google Scholar
  31. Yonekawa, H., Moriwaki, K., Gotoh, O., Hayashi, J. I., Watanabe, J., Miyashita, N., Petras, M. L., and Tagashira, Y. (1981). Evolutionary relationships among five subspecies ofMus musculus based on restriction enzyme cleavage patterns of mitochondrial DNA.Genetics 98801.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Hitoshi Suzuki
    • 1
  • Kimiyuki Tsuchiya
    • 2
  • Mitsuru Sakaizumi
    • 3
  • Shigeharu Wakana
    • 4
  • Osamu Gotoh
    • 5
  • Naruya Saitou
    • 6
  • Kazuo Moriwaki
    • 7
  • Susumu Sakurai
    • 1
  1. 1.Division of Molecular GeneticsJikei University School of MedicineTokyoJapan
  2. 2.Experimental Animal CenterMiyazaki Medical CollegeMiyazakiJapan
  3. 3.Department of Experimental Animal ScienceTokyo Metropolitan Institute of Medical ScienceTokyoJapan
  4. 4.Department of GeneticsCentral Institute for Experimental AnimalsKawasakiJapan
  5. 5.Department of BiochemistrySaitama Cancer Center Research InstituteSaitamaJapan
  6. 6.Department of Anthropology, Faculty of ScienceUniversity of TokyoTokyoJapan
  7. 7.National Institute of GeneticsMishimaJapan

Personalised recommendations