Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 32, Issue 5, pp 445–449 | Cite as

Rules of change in elastic, thermal, and energy properties in a number of cubic transition metal monocarbides

  • V. V. Ogorodnikov
  • Yu. I. Rogovoi
Research Methods and Powder Material Properties

Keywords

Energy Property Metal Monocarbides Transition Metal Monocarbides 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carbides and Alloys Based on Them [in Russian], Naukova Dumka, Kiev (1976).Google Scholar
  2. 2.
    High-Temperature Carbides [in Russian], Naukova Dumka, Kiev (1975).Google Scholar
  3. 3.
    V. S. Emel'yanov and A. I. Evstyukhin, The Metallurgy of Nuclear Fuel [in Russian], Atomizdat, Moscow (1968).Google Scholar
  4. 4.
    R. E. Hanneman and H. C. Gatos, “Relationship between compressibility and thermal expansion coefficients in cubic metals and alloys,” J. Appl. Phys.,36, No. 5, 1794–1796 (1965).Google Scholar
  5. 5.
    D. B. Sirdeshmukh, “A modification of the Hanneman — Gatos relation,” ibid.,,38, No. 10, 4083–4084 (1967).Google Scholar
  6. 6.
    O. Anderson, “Determination and certain uses of isotropic elastic constants of polycrystalline systems obtained from the data of single crystals,” in: Physical Acoustics, W. Mason (ed.) [Russian translation], Mir, Moscow (1968), pp. 62–120.Google Scholar
  7. 7.
    S. S. Kiparisov and A. A. Nuzhdin, “Thermal expansion of sintered titanium and zirconium carbides in the area of their homogeneity,” Poroshk. Metall., No. 4, 57–61 (1988).Google Scholar
  8. 8.
    G. V. Samsonov and I. M. Vinitskii, Refractory Compounds: A Handbook [in Russian], Metallurgiya, Moscow (1976).Google Scholar
  9. 9.
    R. Kiffer and F. Benezovskii, Hard Materials [in Russian], Metallurgiya, Moscow (1968).Google Scholar
  10. 10.
    G. V. Samsonov, G. Sh. Updakhaya, and V. S. Neshpor, The Physical Material Science of Carbides [in Russian], Naukova Dumka, Kiev (1974).Google Scholar
  11. 11.
    G. V. Samsonov, Refractory Compounds: A Handbook [in Russian], Metallurgizdat, Moscow (1963).Google Scholar
  12. 12.
    M. H. Rand and R. S. Street, “Anomalous thermal expansion in the plutonium monocarbide region,” in: Carbides in Nuclear Energy, Vol. 1, Macmillan and Co., Inc., London (1964), pp. 342–357.Google Scholar
  13. 13.
    C. K. Jun and P. T. B. Shaffer, “Thermal expansion of niobium carbide, hafnium carbide and tantalum carbide at high temperatures,” J. Less-Common Metals,24, No. 3, 323–327 (1971).Google Scholar
  14. 14.
    A. Padel and Ch. de Novion, “Constantes elastiques des carbures, nitrures et oxydes d'uranium et de plutonium,” J. Nucl. Mater.,33, No. 1, 40–51 (1969).Google Scholar
  15. 15.
    “Plutonium: physicochemical properties of its compounds and alloys,” Atom. En. Rev., IAEA, Vienna,4, No. 1, 75 (1966).Google Scholar
  16. 16.
    F. I. Ajami and R. K. MacCrone, “Thermal expansion, Debye temperature and Grüneisen constant of carbides and nitrides,” J. Less-Common Metals,38, No. 2/3, 101–110 (1974).Google Scholar
  17. 17.
    R. B. Kotel'nikov, S. N. Bashlykov, Z. G. Galiakbarov, et al., Especially Refractory Elements and Compounds: A Handbook [in Russian], Metallurgiya, Moscow (1969).Google Scholar
  18. 18.
    C. K. Jun and P. T. B. Shaffer, “Elastic moduli of niobium carbide and tantalum carbide at high temperature,” J. Less-Common Metals,23, No. 4, 367–373 (1971).Google Scholar
  19. 19.
    H. L. Brown, P. E. Armstrong, and C. P. Kempter, “Elastic properties of some polycrystalline transition metal monocarbides,” J. Chem. Physics,45, No. 2, 547–549 (1966).Google Scholar
  20. 20.
    J. L. Routbort, “Adiabatic elastic constants of uranium monocarbide,” J. Nucl. Mater.,40, No. 1, 17–26 (1971).Google Scholar
  21. 21.
    R. Change and L. Graham, “Low-temperature elastic properties of ZrC and Tic,” J. Appl. Phys.,37, No. 10, 3778–3783 (1966).Google Scholar
  22. 22.
    H. L. Brown and C. P. Kempter, “Elastic properties of zirconium carbide,” Phys. Stat. Sol. (B),18, No. 1, K21-K23 (1966).Google Scholar
  23. 23.
    V. M. Baranov, V. I. Knyazev, and O. S. Korostin, “Temperature relationships of the elastic constants of nonstoichiometric zirconium carbides,” Probl. Prochn., No. 9, 45–47 (1973).Google Scholar
  24. 24.
    A. R. Hall, “Elastic moduli and internal friction of some uranium ceramics,” J. Nucl. Mater.,37, No. 3, 314–323 (1970).Google Scholar
  25. 25.
    V. M. Baranov, V. I. Knyazev, and O. S. Korostin, “The elastic properties of nonstoichiometric niobium carbides in the 20–2000°C range,” Izv. Akad. Nauk SSSR, Neorg. Mater.,11, No. 3, 442–446 (1975).Google Scholar
  26. 26.
    L. Tot, Carbides and Nitrides of Transition Metals [Russian translation], Mir, Moscow (1974).Google Scholar
  27. 27.
    B. G. Bukatov, O. S. Korostin, and V. I. Knyazev, “The internal friction of TaC0.99 from 20 to 2000°C,” Izv. Akad. Nauk SSSR, Neorg. Mater.,11, No. 2, 370–372 (1975).Google Scholar
  28. 28.
    R. F. Brenton, C. R. Saunders, and C. R. Kempter, “Elastic properties and thermal expansion of niobium monocarbide to high temperature,” J. Less-Common Metals,19, No. 3, 273–278 (1969).Google Scholar
  29. 29.
    V. M. Baranov, V. G. Bukatov, and O. S. Korostin, “The temperature relationship of the elastic constants of vanadium carbides,” Izv. Akad. Nauk SSSR, Neorg. Mater.,9, No. 8, 1362–1364 (1973).Google Scholar
  30. 30.
    V. G. Bukatov, V. I. Knyazev, O. S. Korostin, et al., “The change in elastic characteristics in the area of homogeneity of certain transition metal carbides,” in: Carbides and Alloys Based on Them [in Russian], Naukova Dumka, Kiev (1976), pp. 111–114.Google Scholar
  31. 31.
    I. N. Frantsevich, E. A. Zhurakovskii, and A. B. Lyashenko, “Elastic constants and features of the electron structure of certain classes of refractory compounds obtained by the cermet method,” Izv. Akad. Nauk SSSR, Neorgan. Mater.,3, No. 1, 8–15 (1967).Google Scholar
  32. 32.
    J. J. Gilman and B. W. Roberts, “Elastic constants of TiC and TiB2,” J. Appl. Phys.,32, No. 7, 1405 (1961).Google Scholar
  33. 33.
    K. E. Uiks and F. E. Blok, Thermodynamic Properties of 65 Elements and of Their Oxides, Halogenides, Carbides, and Nitrides [in Russian], Metallurgiya, Moscow (1965).Google Scholar
  34. 34.
    T. A. Sandenaw and E. K. Storms, “Heat capacities of NbC0.702, NbC0.825, NbC0.98, and Nb2C below 320 K,” J. Phys. Chem. Sol.,27, No. 1, 217–218 (1966).Google Scholar
  35. 35.
    V. A. Tskhai, V. S. Mokronosov, V. S. Chernyaev, et al., “The heat capacity of vanadium and niobium carbides and infrared absorption spectra,” Zh. Neorg. Khim.,16, No. 3, 611–616 (1971).Google Scholar
  36. 36.
    É. Storms, Refractory Carbides [in Russian], Atomidat, Moscow (1970).Google Scholar
  37. 37.
    A. S. Bolgar, A. G. Turchanin, and V. V. Fesenko, Thermodynamic Properties of Carbides [in Russian], Naukova Dumka, Kiev (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • V. V. Ogorodnikov
    • 1
  • Yu. I. Rogovoi
    • 1
  1. 1.Academy of Sciences of the UkraineInstitute of Problems of Materials ScienceKiev

Personalised recommendations