Journal of Materials Science

, Volume 18, Issue 2, pp 515–524 | Cite as

Scanning electron microscopy studies in abrasion of NR/BR blends under different test conditions

  • N. M. Mathew
  • S. K. De
Papers

Abstract

The abrasion of NR/BR blend vulcanizates has been studied in three different testing machines and the abraded surfaces have been observed in a scanning electron microscope. The ranking of the unfilled blends obtained from Akron abrader is different from that obtained from Du Pont and DIN abraders, while in the case of the black-filled vulcanizates the same ranking can be obtained from all the three machines. Tensile and fatigue properties are believed to play major roles in determining abrasion loss in the Akron abrader, while the effect of friction is more pronounced in the other two machines. The slip angle of 20° and the deformation of the surface layer of rubber during abrasion accounts for the difference in the direction of the abrasion pattern observed in the case of Akron abrader. The carbon black-reinforced vulcanizates give rise to a fine abrasion pattern. Because of the continuous change in the direction of abrasion in DIN abrader, a well-defined pattern was not observed. The very low abrasion loss of 50/50 blend vulcanizates in Du Pont abrader is also evident from the nature of the abraded surface.

Keywords

Polymer Electron Microscope Scan Electron Microscopy Fatigue Rubber 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Schallamach,Trans. Inst. Rubber Ind. 28 (1952) 256.Google Scholar
  2. 2.
    Idem, Proc. Phys. Soc. B 67 (1954) 883.Google Scholar
  3. 3.
    Idem, Wear 17 (1971) 301.Google Scholar
  4. 4.
    Idem, Rubber Chem. Technol. 41 (1968) 209.Google Scholar
  5. 5.
    M. M. Reznikovskii andG. I. Brodskii, in “Abrasion of Rubber”, edited by D. I. James (Maclaren, London, 1967) p. 14.Google Scholar
  6. 6.
    G. I. Brodskii andM. M. Reznikovskii,ibid.“ p. 81.Google Scholar
  7. 7.
    M. M. Reznikovskii,ibid.“ p. 119.Google Scholar
  8. 8.
    E. Southern andA. G. Thomas,Rubber Chem. Technol. 52 (1979) 1008.Google Scholar
  9. 9.
    K. Satake, T. Some, M. Hamada andK. Hayakawa,ibid. 44 (1971) 1173.Google Scholar
  10. 10.
    W. M. Saltman, in “Encyclopedia of Polymer Science and Technology”, Vol. 2, edited by H. F. Mark, N. G. Gaylord and N. M. Bikales (Interscience, New York, 1965) p. 678.Google Scholar
  11. 11.
    A. K. Bhowmick, S. Basu andS. K. De,J. Mater. Sci. 16 (1981) 1654.Google Scholar
  12. 12.
    Idem, Rubber Chem. Technol. 53 (1980) 321.Google Scholar
  13. 13.
    A. K. Bhowmick, G. B. Nando, S. Basu andS. K. De,ibid. 53 (1980) 327.Google Scholar
  14. 14.
    N. M. Mathew, A. K. Bhowmick andS. K. De,ibid. 55 (1982) 51.Google Scholar
  15. 15.
    S. K. Chakraborty, A. K. Bhowmick, B. K. Dhindaw andS. K. De,ibid. 55 (1982) 41.Google Scholar
  16. 16.
    N. M. Mathew andS. K. De,Polymer 23 (1982) 632.Google Scholar
  17. 17.
    N. M. Mathew, A. K. Bhowmick, B. K. Dhindaw andS. K. De,J. Mater. Sci. in press.Google Scholar
  18. 18.
    R. Mukhopadhyay, S. K. De andS. N. Chakraborty,Polymer 18 (1977) 1243.Google Scholar
  19. 19.
    A. Schallamach,J. Appl. Polymer Sci. 12 (1968) 281.Google Scholar
  20. 20.
    K. A. Grosch andA. Schallamach,Rubber Chem. Technol. 49 (1976) 862.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1983

Authors and Affiliations

  • N. M. Mathew
    • 1
  • S. K. De
    • 1
  1. 1.Rubber Technology CentreIndian Institute of TechnologyKharagpur 721302, West BengalIndia

Personalised recommendations