Journal of Materials Science

, Volume 18, Issue 2, pp 447–456 | Cite as

Fracture behaviour of a single-fibre graphite/epoxy model composite containing a broken fibre or cracked matrix

  • Jayant M. Mahishi
  • Donald F. Adams


A micromechanical analysis of crack initiation and propagation from a broken fibre end, or in the region of a matrix crack, in a graphite/epoxy composite model is considered. The model consists of a single fibre embedded in an annular sheath of matrix material subjected to axial tension. An elastoplastic, axisymmetric finite element analysis has been used. Curing residual stresses, and hygrothermal effects induced due to changes in service temperature and humidity, are included. The influence of the interface between the fibre and matrix material on the behaviour of propagating cracks is also studied. The concept of crack-growth resistance curves (KR -curves) has been used to determine the point of crack instability. Results demonstrate the usefulness of the analytical model in understanding the role of the matrix material in the failure process of composites.


Residual Stress Finite Element Analysis Crack Initiation Fracture Behaviour Matrix Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. E. Waddoups, J. R. Eisenmann andB. E. Kaminski,J. Comp. Mater. 5 (1971) 446.Google Scholar
  2. 2.
    S. Gaggar andL. J. Broutman,ibid. 9 (1975) 216.Google Scholar
  3. 3.
    D. H. Morris andH. T. Hahn, “Composite Materials: Testing and Design”, ASTM STP 617 (ASTM, Phüadelphia, 1977) p. 5.Google Scholar
  4. 4.
    A. C. Garg,Fibre Sci. Tech. 14 (1981) 27.Google Scholar
  5. 5.
    S. Ochiai andP. W. M. Peters,J. Mater. Sci. 17 (1982) 417.Google Scholar
  6. 6.
    D. F. Adams andJ. M. Mahishi, University of Wyoming, USA, Report UWME-DR-201-101-1 (1982).Google Scholar
  7. 7.
    J. M. Mahishi andD. F. Adams,J. Comp. Mater. 16 (1982) in press.Google Scholar
  8. 8.
    D. P. Murphy andD. F. Adams, University of Wyoming, USA, Report UWME-DR-901-103-1 (1979).Google Scholar
  9. 9.
    J. G. Goree andR. S. Cross,J. Eng. Frac. Mech. 13 (1980) 563.Google Scholar
  10. 10.
    D. F. Adams andD. P. Murphy, University of Wyoming, USA, Report UWME-DR-101-102-1 (1981).Google Scholar
  11. 11.
    R. H. Heyer, ASTM STP 527 (ASTM, Philadelphia, 1973) p. 3.Google Scholar
  12. 12.
    G. C. Grimes, D. F. Adams andE. G. Dusablon, Northrop Corp./University of Wyoming, USA, Report NOR-80-158 (1980).Google Scholar
  13. 13.
    D. A. Crane andD. F. Adams, University of Wyoming, USA, Report UWME-DR-101-101-1 (1981).Google Scholar
  14. 14.
    R. M. Richard andJ. R. Blacklock,AIAA J. 7 (1969) 432.Google Scholar
  15. 15.
    P. W. R. Beaumont andP. D. Anstice,J. Mater. Sci. 15 (1980) 2619.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1983

Authors and Affiliations

  • Jayant M. Mahishi
    • 1
  • Donald F. Adams
    • 1
  1. 1.Composite Materials Research GroupUniversity of WyomingLaramieUSA

Personalised recommendations