Advertisement

Biomedical Engineering

, Volume 23, Issue 1, pp 29–32 | Cite as

Effect of absorption of laser radiation by blood hemoglobin on threshold of destruction of pathological tissue during laser angioplasty

  • A. N. Bekeshko
  • A. A. Belyaev
  • G. N. Zmievskoi
  • N. V. Rubinskii
  • S. É. Ragimov
  • N. A. Ryzhov
  • V. S. Stefanyuk
Research, Design, And Technology

Conclusions

1. Absorption by hemoglobin increases the threshold power density of laser radiation at the outlet of the light guide and, together with scattering of the radiation, determines the range of distances between the irradiated surface and the end of the light guide within which destruction of atherosclerotic formations (the range of working distances) can be obtained.

2. For the purpose of laser angioplasty, it is advisable to use light-conducting systems with a numerical aperture of not more than 0.2 at the outlet.

3. For an ionic argon laser (λ=0.488−0.514 μ) the range of working distances is limited to something of the order of 1 mm and is mainly determined by absorption of the radiation by hemoglobin. An increase of power causes virtually no change in this value.

4. For a solid laser on Nd:YAG (λ=1.064 μ) the range of working distances is limited to something of the order of 1.5–2 mm, and is determined mainly by scattering of the radiation at the outlet of the light-conducting system.

Keywords

Radiation Argon Laser Radiation Power Density Numerical Aperture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. S. Aleinikov, V. P. Belyaev, B. V. Grigor'ev, et al., Élektron. Prom., No. 5–6, 147 (1981).Google Scholar
  2. 2.
    B. V. Petrovskii (ed.), Great Medical Encyclopedia, 3rd edition [in Russian], Vol. 5, Moscow (1977), p. 568.Google Scholar
  3. 3.
    N. S. Kapani, Fiberoptics [Russian translation], Moscow (1969).Google Scholar
  4. 4.
    L. Z. Kriksunov, Reference Book on Principles of Infrared Technology [in Russian], Moscow (1978).Google Scholar
  5. 5.
    S. E. Ragimov, A. A. Belyaev, M. A. Bragin, et al., Byull. Vses. Kardiol. Nauch. Tsent., No. 2, 100 (1985).Google Scholar
  6. 6.
    G. S. Abela, S. Normann, D. Cohen, et al., Am. J. Cardiol.,50, 1199 (1982).Google Scholar
  7. 7.
    G. Boussignac, H. Geschwind, and B. Teisseire, Eur. Heart J.,5, 45 (1984).Google Scholar
  8. 8.
    D. S. J. Choy, S. Stertzer, R. Myler, et al., Conference on Lasers and Electro-Optics. Technical Digest, Anaheim, Cal. (1984).Google Scholar
  9. 9.
    N. P. Furzikov, IEEE J. Quantum Electr., QE-24, No. 10, A4272 (1987).Google Scholar
  10. 10.
    R. Zdrojkovski and N. Pisharoty, IEEE Trans. Bio-Med. Eng., BME-17, 132 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • A. N. Bekeshko
  • A. A. Belyaev
  • G. N. Zmievskoi
  • N. V. Rubinskii
  • S. É. Ragimov
  • N. A. Ryzhov
  • V. S. Stefanyuk

There are no affiliations available

Personalised recommendations