Russian Physics Journal

, Volume 36, Issue 5, pp 462–468 | Cite as

A linear method for calculating the electronic structure of metal alloys having arbitrary degrees of long range order

  • S. A. Volodin
  • V. I. Simakov
Solid State Physics


A linear method is developed for calculating the electronic structure of partially ordered alloys based on multiple scattering theory. This method makes it possible to describe the properties of a system (atomic, magnetic, etc.) having various degrees of order within a single approach. The proposed linearization scheme reduces the amount of and increases the speed of the calculations in obtaining the electronic structure of complicated multicomponent systems possessing arbitrary degrees of long range order.


Long Range Multiple Scattering Range Order Metal Alloy Linear Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. V. Nemoshkalenko and V. N. Antonov, Computational Methods in Solid State Physics. Band Theory of Metals [in Russian], Naukova Dumka, Kiev (1986).Google Scholar
  2. 2.
    V. V. Nemoshkalenko and Yu. N. Kucherenko, Computational Methods in Solid State Physics. Electron States in Nonideal Crystals [in Russian], Naukova Dumka, Kiev (1986).Google Scholar
  3. 3.
    V. E. Egorushkin, A. I. Kul'ment'ev, E. V. Savushkin, et al., Electrons and Phonons in Disordered Alloys [in Russian], Nauka, Novosibirsk (1989).Google Scholar
  4. 4.
    A. J. Pindor, W. M. Temmerman, and B. L. Gyröffy, J. Phys. F. Met. Phys.,13, No. 8, 1628 (1983).Google Scholar
  5. 5.
    H. L. Skriver, The LMTO Method, Muffin-Tin Orbitals, and Electronic Structure, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo (1984).Google Scholar
  6. 6.
    O. K. Andersen, Phys. Rev. B,12, No. 8, 3060 (1975).Google Scholar
  7. 7.
    B. L. Györffy and G. M. Stocks, Electrons in Disordered Metals and at Metallic Surfaces P. Pharisean, B. L. Györffy, and L. Sheire (eds.), Plenum Press, New York (1979), pp. 89–192.Google Scholar
  8. 8.
    V. E. Egorushkin and A. I. Kul'ment'ev, Izv. Vuzvo. Fiz.12, 29 (1982).Google Scholar
  9. 9.
    H. Ehrenerich and L. Schwartz, Electron Structure of Alloys [Russian translation], Mir, Moscow (1979).Google Scholar
  10. 10.
    A. G. Khachaturyan, Theory of Phase Transitions and the Structure of Solid Solutions [in Russian], Nauka, Moscow (1974).Google Scholar
  11. 11.
    A. A. Smirnov, Generalized Theory of Ordered Alloys [in Russian], Naukova Dumka, Kiev (1986).Google Scholar
  12. 12.
    B. Segall, Phys. Rev.,105, No. 1, 108 (1957).Google Scholar
  13. 13.
    S. A. Volodin, V. I. Simakov, V. E. Egorushkin, and A. A. Tukhfatulin, Physics of Transition Metals, International Conference (May 31-June 3, 1988, Part 2), Naukova Dumka, Kiev (1989), pp. 53–56.Google Scholar
  14. 14.
    W. A. Butler, Phys. Rev. B,14, No. 2, 468 (1976).Google Scholar
  15. 15.
    R. Richter and F. Coedsche, Phys. Status Solidi (b),88, No. 2, 485 (1978).Google Scholar
  16. 16.
    S. V. Alyshev, D. V. Boltovskii, and V. E. Egorushkin, Preprint TF SO AN SSSR, Tomsk (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • S. A. Volodin
  • V. I. Simakov

There are no affiliations available

Personalised recommendations