Russian Physics Journal

, Volume 38, Issue 7, pp 735–747 | Cite as

Quasicollinear acoustooptical interaction in three-dimensionally optically inhomogeneous crystals

  • S. N. Sharangovich
Optics And Spectroscopy


A theoretical model is given for the quasicollinear acoustooptical interaction of beams in a three-dimensionally optically inhomogeneous, anisotropic medium. Analytical solutions of the coupled wave equations are obtained for a regular linear inhomogeneity model in relation to the spatial profiles of the frequency spectrum of the diffracted field. The spatiospectral transfer functions are determined, and their selective properties are investigated for various orientations and magnitudes of the gradient of the optical inhomogeneity for both low and high diffraction efficiencies. Numerical simulation results are given.


Theoretical Model Transfer Function Wave Equation Frequency Spectrum Anisotropic Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Balakshii, V. N. Parygin, and L. B. Chirkov, Physical Principles of Acoustooptics [in Russian], Radio i Svyaz', Moscow (1985).Google Scholar
  2. 2.
    A. S. Zadorin, S. M. Shandarov, and S. N. Sharangovich, Acoustical and AO Properties of Single Crystals [in Russian], Izd. TGU, Tomsk (1987).Google Scholar
  3. 3.
    A. S. Zadorin and S. N. Sharangovich, Opt. Spektrosk.,61, No. 3, 642–645 (1986).Google Scholar
  4. 4.
    A. S. Zadorin and S. N. Sharangovich, Opt. Spektrosk.,65, No. 3, 726–731 (1988).Google Scholar
  5. 5.
    M. Baradash and G. J. Wolga, Appl. Opt.,28, No. 20, 4279–4285 (1989).Google Scholar
  6. 6.
    M. M. Mazur, Kh. M. Makhmudov, S. E. Khmyleva, and L. I. Mazur, Zh. Tekh. Fiz.,60, No. 9, 148–150 (1990).Google Scholar
  7. 7.
    I. N. Kushnarev and S. N. Sharangovich, Zh. Tekh. Fiz.,62, No. 1, 171–186 (1991).Google Scholar
  8. 8.
    I. N. Kushnarev and S. N. Sharangovich, Zh. Tekh. Fiz.,63, No. 2, 24–42 (1993).Google Scholar
  9. 9.
    A. Erdélyi, Higher Transcendental Functions (California Institute of Technology H. Bateman Manuscript Project), 3 vols., McGraw-Hill, New York (1953, 1955).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • S. N. Sharangovich

There are no affiliations available

Personalised recommendations