Russian Physics Journal

, Volume 38, Issue 2, pp 182–185 | Cite as

Change in the Kul'bak information difference as a self-organized system evolves in parameter space

  • R. G. Zaripov
Physics Of Elementary Particles And Field Theory
  • 15 Downloads

Abstract

We consider an information-theoretic treatment of transitions between stationary states in open self-organized systems. The I-theorem is proved in the general case when the information additivity condition (or the Gibbs' condition for the energy) is not satisfied. A new theorem is formulated on the increase of the information efficiency of energy conversion during self-organization.

Keywords

Parameter Space Stationary State Energy Conversion Additivity Condition Information Difference 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. L. Klimontovich, Pis'ma Zh. Tekh. Fiz.,8, No. 23, 1412–1416 (1983).Google Scholar
  2. 2.
    Yu. L. Klimontovich, Z. Phys. B,66, No. 1, 125–127 (1987).Google Scholar
  3. 3.
    J. W. Gibbs, Elementary Principles of Statistical Mechanics, Yale University Press, New Haven, Connecticut (1902).Google Scholar
  4. 4.
    Yu. L. Klimontovich, Turbulent Motion and the Structure of Chaos. New Approach to the Statistical Theory of Open Systems [in Russian], Nauka, Moscow (1990).Google Scholar
  5. 5.
    R. G. Zaripov, Zh. Tekh. Fiz.,58, No. 11, 2247–2249 (1988).Google Scholar
  6. 6.
    R. G. Zaripov, Czech. J. Phys.,41, No. 9, 793–798 (1991).Google Scholar
  7. 7.
    S. Kul'bak, Theory of Information and Statistics [in Russian], Nauka, Moscow (1967).Google Scholar
  8. 8.
    R. G. Zaripov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 7, 29–33 (1987).Google Scholar
  9. 9.
    R. G. Zaripov, Gravitation and the Theory of Relativity [in Russian], No. 25, Kazan' (1988), pp. 57–67.Google Scholar
  10. 10.
    R. G. Zaripov, Gravitation and the Theory of Relativity [in Russian], No. 27, Kazan' (1990), pp. 86–94.Google Scholar
  11. 11.
    R. G. Zaripov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 9, 87–91 (1990).Google Scholar
  12. 12.
    R. G. Zaripov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 9, 10–13 (1991).Google Scholar
  13. 13.
    R. G. Zaripov, Czech. J. Phys.,43, No. 2, 105–110 (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • R. G. Zaripov

There are no affiliations available

Personalised recommendations