Fine structure and its functional properties of the endostyle of Ascidians,Ciona intestinalis

A part of phylogenetic studies of the thyroid gland
  • Hisao Fujita
  • Hisaka Nanba


For the purpose used in understanding thyroid phylogenesis, the fine structure and the iodine metabolism of the endostyle of Ascidians,Ciona intestinalis, was studied by electron microscopy and electron microscopic autoradiography. There are 8 kinds of zones in the endostyle.

Zone 1, 3, and 5 cells, especially zone 1 cells, are characterized by numerous long cilia. These cells which show no indications of protein-secretion but numerous small vesicles and cytoplasmic filaments might play a role in catching and transporting food, absorption of liquid and supporting the endostylar construction.

Zone 2, 4, and 6 cells are large and characterized by well developed rough endoplasmic reticulum and numerous electron-dense secretory granules which are considered to be synthesized in the rough endoplasmic reticulum and transported to the Golgi apparatus to mature. They, which are somewhat similar to the pancreatic exocrine cells in fine structure, are believed to secrete the proteinous or mucoproteinous substances which might be related to the digestion of food.

Zone 7 and 8 cells which might be homologous to the thyroid cell of the higher vertebrate contains poorly developed rough endoplasmic reticulum, small Golgi apparatus, a few multivesicular bodies, a few lysosomes, and numerous small vesicles. In addition zone 8 cells bear cilia on their apical surface. The cytoplasmic characteristics of these cell types, especially of zone 8 cells, are fairly similar to those of type 2C and type 3 cells of the endostyle of a larval lamprey, though the rough endoplasmic reticulum is not so well developed. By electron microscopic autoradiography numerous silver grains were observed on the apical cell membrane region of zone 7 and 8 cells, especially of zone 8 cells, 1, 4, 6, 16 and 24 hours after immersion in sea water containing125I. This fact suggests that the iodination takes place in the apical cell membrane region of these cells. The materials in the endostylar lumen is washed away during the fixation and dehydrating processes of the tissue. Therefore, the possibility of iodination of thyroglobulin-like substances taking place within the endostylar lumen cannot be ruled out. Grains were also found in the multivesicular bodies and lysosomes after 4, 6, 16 and 24 hours, especially 16 and 24 hours. It seems that the organic iodine might be reabsorbed into the cytoplasm of these cells.


Endostyle Ascidians Zones Iodination Homology to the Thyroid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bargmann, W.: Die Schilddrüse. In: Handbuch der mikroskopischen Anatomie des Menschen (W. v. Möllendorff, ed.), Bd. VI/2, S. 22–23. Berlin: Springer 1939.Google Scholar
  2. Barrington, E. J. W.: The distribution and significance of organically bound iodine in the ascidianCiona intestinalis. J. Mar. Biol. Ass. U.K.36, 1–16 (1957).Google Scholar
  3. —: Some endocrinological aspects of the protochordata. In: Comparative endocrinology, ed. by A. Gorbman. New York: Wiley 1959.Google Scholar
  4. —: Hormones and evolution. London: Einglish Univ. Press 1964.Google Scholar
  5. —: The biology of hemichordata and protochordata. Edinburgh: Oliver and Boyd 1965.Google Scholar
  6. —, Barron, N.: On the organic binding of iodine in the tunic ofCiona intestinalis. J. Mar. Biol. Ass. U.K.39, 513–525 (1960).Google Scholar
  7. —, Franchi, L. L.: Organic binding of iodine in the endostyle ofCiona intestinalis. Nature (Lond.)177, 432 (1956).Google Scholar
  8. —, Thorpe, A.: An autoradiographic study of the binding of iodine125I in the endostyle and pharynx of the ascidians,Ciona intestinalis L. Gen. comp. Endocr.5, 373–385 (1965).Google Scholar
  9. Covelli, I., Salvatore, G., Sena, L., Roche, J.: Sur la formation d'hormones thyroidiennes et de leurs précurseurs parBranchiostoma lanceolatum Pallas (Amphioxus). C. R. Soc. Biol. (Paris)154, 1165–1189 (1960).Google Scholar
  10. Dohrn, A.: Thyreoidea bei Petromyzon,Amphioxus und den Tunicaten. Mitt. Zool. stat. Napel6, 49–92 (1886).Google Scholar
  11. Egeberg, J.: Iodine-concentrating cells in the endostyle ofAmmocoetes. Z. Zellforsch.68, 102–115 (1965).Google Scholar
  12. Fujita, H.: Studies on the iodine metabolism of the thyroid gland as revealed by electron microscopic autoradiography of125I. Virchows Arch. Abt. B2, 265–279 (1969).Google Scholar
  13. - Outline of the fine structural aspects on the synthesis and release of the thyroid hormone. Gunma Symp. Endocrinol. (in press).Google Scholar
  14. —, Honma, Y.: Some observations on the fine structure of the endostyle of larval lampreys, ammocoetes ofLampetra japonica. Gen. comp. Endocr.11, 111–131 (1968).Google Scholar
  15. — —: Iodine metabolism of the endostyle of larval lampreys, ammocoetes ofLampetra japonica. Electron microscopic autoradiography of125I. Z. Zellforsch.98, 525–537 (1969).Google Scholar
  16. Hoheisel, G.: Untersuchungen zur funktionellen Morphologie des Endostyls und der Thyreoidea vom Bauchneunauge (Lampetra planeri Bloch.). I. Untersuchungen am Endostyl. Morph. Jb.114, 204–240 (1969).Google Scholar
  17. Ibrahim, M. S., Budd, G. C.: An electron microscopic study of the site of iodine binding in the rat thyroid gland. Exp. Cell Res.38, 50–56 (1965).Google Scholar
  18. Kennedy, G. R.: The distribution and nature of iodine compounds in ascidians. Gen. comp. Endocr.7, 500–511 (1966).Google Scholar
  19. Müller, W.: Über die Entwicklung der Schilddrüse. Jena. Z. Naturw. Med.6, 428–460 (1871).Google Scholar
  20. —: Über die Hypobranchialrinne der Tunicaten und deren Vorhandensein beiAmphioxus und den Cyclostomen. Jena. Z. Naturw.7, 327–332 (1873).Google Scholar
  21. Nadler, N. J.: Iodination of thyroglobulin in the thyroid follicle. In: Current topics in thyroid research. New York: Academic Press 1965.Google Scholar
  22. —, Young, B. A., Leblond, C. P., Mitmaker, B.: Elaboration of thyroglobulin in the thyroid follicle. Endocrinology74, 333–354 (1964).Google Scholar
  23. Olsson, R.: Endostyle and endostylar secretions. A comparative histochemical study. Acta zool. (Stockh.)44, 299–328 (1963).Google Scholar
  24. —: The cytology of the endostyle ofOikopleura dioica. Ann. N.Y. Acad. Sci.118, 1038–1051 (1965).Google Scholar
  25. Seljelid, R.: Endocytosis in thyroid follicle cells. IV. On the acid phosphatase activity in thyroid follicle cells, with special reference to the quantitative aspects. J. Ultrastruct. Res.18, 237–256 (1967).Google Scholar
  26. Stein, O., Gross, J.: Metabolism of I125 in the thyroid gland studied with electron microscopic autoradiography. Endocrinology75, 789–798 (1964).Google Scholar
  27. Tong, W., Kerkoff, P., Chaikoff, I.L.: Identification of labelled thyroxine and triiodothyronine in amphioxus treated with131I. Biochem. biophys. Acta (Amst.)56, 326–331 (1962).Google Scholar
  28. Welsch, U., Storch, V.: Zur Feinstruktur und Histochemie des Kiemendarmes und der Leber vonBranchiostoma lanceolatum (Pallas). Z. Zellforsch.102, 432–446 (1969).Google Scholar
  29. Wollman, S. H., Burstone, M. S.: Localization of esterase and acid phosphatase in granules and colloid droplets in rat thyroid epithelium. J. Cell Biol.21, 191–201 (1964).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Hisao Fujita
    • 1
    • 2
  • Hisaka Nanba
    • 1
    • 2
  1. 1.Department of AnatomyState University of New York at BuffaloBuffaloUSA
  2. 2.Department of AnatomyHiroshima University School of MedicineHiroshimaJapan

Personalised recommendations