Skip to main content
Log in

Effects of high-energy ion implantation into metals

  • Published:
Russian Physics Journal Aims and scope

Abstract

The laws and features of the formation of phase-structural states and defect formation during high-energy (E ≥100 MeV) ion implantation are reviewed. We consider the salient feature of such action in solids, namely, strong electron excitations in the solids and, therefore, the dominant value of electron stopping of ions; formation of buried tracks; and abrupt increase in the role of electron excitations in the generation of structural defects. High-energy and multiple-energy implantation is shown to be effective in modifying the physicomechanical properties of solids because of the formation of deep-lying doped layers and the considerable thickness of the ion-modified surface layer of the target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. F. Burenkov and F. F. Komarov, Zh. Tekh. Fiz.,58, 559 (1988).

    Google Scholar 

  2. W. R. Fahrner, K. G. Oppermann, and T. Harms, Phys. Status Solidi A,123, 109 (1991).

    Google Scholar 

  3. A. La Ferla, E. Rimini, G. Giavola, and G. Ferla, Nucl. Instrum. Methods,B37, 951 (1989).

    Google Scholar 

  4. G. Bardos, Radiat. Effects,105, 191 (1988).

    Google Scholar 

  5. G. Bardos, Radiat. Effects,105, 203 (1988).

    Google Scholar 

  6. K. Nakata, S. Takamura, T. Aruga, and M. Kobiyama, J. Nucl. Mater.,151, 301 (1988).

    Google Scholar 

  7. T. Aruga, K. Nakata, and S. Takamura, Nucl. Instrum. Methods,B33, 748 (1988).

    Google Scholar 

  8. F. F. Komarov, A. F. Burenkov, G. G. Konoplyanik, et al., Nucl. Instrum. Methods,B48, 439 (1990).

    Google Scholar 

  9. T. S. Noggle, B. R. Appleton, J. M. Williams, et al., J. Nucl. Mater.,125, 330 (1984).

    Google Scholar 

  10. F. F. Komarov, Ion Implantation into Metals [in Russian], Metallurgiya, Moscow (1990).

    Google Scholar 

  11. J. M. Anthony and W. A. Lanford, Phys. Rev.,A25, 1868 (1992).

    Google Scholar 

  12. R. V. Gribkovskii, F. F. Komarov, and A. P. Novikov, Zarubezh. Radioélektron., No. 9, 28 (1989).

  13. J. L. Brimhall, H. E. Kissinger, and A. R. Pelton, Radiat. Effects,77, 237 (1983).

    Google Scholar 

  14. J. L. Brimhall, H. E. Kissinger, and A. R. Pelton, Radiat. Effects,90, 241 (1985).

    Google Scholar 

  15. J. E. Griffith, Y. Qiu, and T. A. Tombrello, Nucl. Instrum. Methods,198, 607 (1982).

    Google Scholar 

  16. R. P. Livi, Nucl. Instrum. Methods,B10/11, 545 (1985).

    Google Scholar 

  17. R. G. Stokstad, P. J. Jacobs, I. Tserruya, L. Sapir, and G. Mamane, Nucl. Instrum. Methods,B16, 465 (1986).

    Google Scholar 

  18. R. E. Beneson, B. Daudin, P. Martin, and M. Bubus, Nucl. Instrum. Methods,B19/20, 114 (1987).

    Google Scholar 

  19. C. Zhengynan and L. Jiarui, Nucl. Instrum. Methods,B36, 173 (1989).

    Google Scholar 

  20. T. Ito and W. M. Gibson, Nucl. Instrum. Methods,B12, 382 (1985).

    Google Scholar 

  21. G. J. Clark, A. D. Marwick, R. H. Koch and R. B. Laibowitz, Appl. Phys. Lett.,51, 139 (1987).

    Google Scholar 

  22. F. W. Saris, Vacuum,39, 173 (1989).

    Google Scholar 

  23. R. B. Schwarz, and W. L. Johnson, Phys. Rev. Lett.,51, 415 (1983).

    Google Scholar 

  24. A. Thoma, H. Adrian, and G. Saemann-Ischenko, J. Less-Common Metals,145, 115 (1983).

    Google Scholar 

  25. K. Samwer, Phys. Rep.,161, 1 (1988).

    Google Scholar 

  26. A. M. Parez-Martin, A. M. Vredenberg, L. de Witt, and J. S. Custer, Mater. Sci. Eng.,B19, 281 (1993).

    Google Scholar 

  27. P. H. Hahn, R. S. Averback, and S. J. Rothman, Phys. Rev.,B33, 8825 (1986).

    Google Scholar 

  28. H. Hahn, R. S. Averback, F.-R. Ding, C. Laxton, and J. Baker, Mater. Sci. Forum,15–18, 551 (1987).

    Google Scholar 

  29. J. M. Poate, Mater. Sci. Eng.,B2, 41 (1989).

    Google Scholar 

  30. A. La Ferla, A. Difranco, E. Rimini, G. Ciavolo, and G. Ferla, Mater. Sci. Eng.,B2, 69 (1989)

    Google Scholar 

  31. R. J. Schreutelkampf, J. R. Liffting, P. M. Zagwijn, X. W. Lu, and F. W. Saris, Nucl. Instrum. Methods,134, 448 (1990).

    Google Scholar 

  32. H. Wong, E. Dang, N. W. Cheung, P. K. Chu, E. M. Strathman, and M. D. Strathman, Nucl. Instrum. Methods,B21, 447 (1987).

    Google Scholar 

  33. A. F. Burenkov, V. S. Varichenko, A. M. Zaitsev, et al., Phys. Status Solidi,A115, 427 (1989).

    Google Scholar 

  34. A. F. Burenkov, F. F. Komarov, S. A. Fedotov, et al., Radiat. Effects,25, 169 (1993).

    Google Scholar 

  35. A. F. Burenkov, F. F. Komarov, and S. A. Fedotov, Phys. Status Solidi,B169, 33 (1992).

    Google Scholar 

  36. A. F. Burenkov, F. F. Komarov, and S. A. Fedotov, Nucl. Instrum. Methods,B67, 35 (1992).

    Google Scholar 

  37. A. F. Burenkov, F. F. Komarov, and S. A. Fedotov, Nucl. Instrum. Methods,B67, 30 (1992).

    Google Scholar 

  38. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Rage of Ions in Solids, Pergamon, New York (1985), p. 321.

    Google Scholar 

  39. W. Brandt and M. Kitagawa, Phys. Rev.,B25, 5631 (1982).

    Google Scholar 

  40. J. Lindhard, K. Winter and K. Dan, Videnskab Selsk. Mat. Fys. Medd.,27, 1 (1954).

    Google Scholar 

  41. H.-D. Betz., Rev. Mod. Phys.,44, 465 (1972).

    Google Scholar 

  42. A. M. Zaitsev, S. A. Fedotov, A. A. Melnikov, F. F. Komarov, W. R. Fahrner, V. S. Varichenko, and E. H. Kaat, Nucl. Instrum. Methods,B82, 421 (1993).

    Google Scholar 

  43. F. Pleiter and C. Hohenemser, Phys. Rev.,25B, 106 (1982).

    Google Scholar 

  44. R. M. More and J. A. Spitznagel, Radiat. Effects,37, 27 (1982).

    Google Scholar 

  45. A. I. Melker, S. N. Romanov, and N. L. Tarasenko, Phys. Status Solidi,B132, 425 (1985);B133, 111 (1986).

    Google Scholar 

  46. A. Iwase, S. Sasaki, T. Iwata, and T. Nihira, J. Nucl. Mater.,133/134, 365 (1985).

    Google Scholar 

  47. D. A. Thompson, A. M. Omar, and J. E. Robinson, Nucl. Mater.,85/86, 509 (1979).

    Google Scholar 

  48. R. S. Averback, T. Diaz de la Rubia, H. Hsich, and R. Bedenek, Nucl. Instrum. Methods,B59/60, 709 (1991).

    Google Scholar 

  49. A. A. Gadalla, W. Jäger, and P. Ehrhart, Egyp. J. Phys.,17, 1 (1986).

    Google Scholar 

  50. D. A. Thompson, Radiat. Effects,56, 105 (1981).

    Google Scholar 

  51. I. M. Robertson, M. A. Kirk, and W. E. King, Scr. Metallurgica,18, 317 (1984).

    Google Scholar 

  52. M. L. Jenkins, C. A. English, and R. L. Eyre, Philos. Mag.,38A, 97 (1978).

    Google Scholar 

  53. S. Sasaki and A. Iwase, Nucl. Instrum. Methods,B33, 701 (1988).

    Google Scholar 

  54. M. A. Kirk, I. M. Robertson, M. L. Jenkins, et al., J. Nucl. Mater.,149, 21 (1987).

    Google Scholar 

  55. K. Schäublin and R. Gotthard, Radiat. Effects and Defects in Solids,126, 185 (1987).

    Google Scholar 

  56. F. Paschoud, M. Alurralde, G. Szenes, et al., Effects and Defects in Solids,126, 177 (1987).

    Google Scholar 

  57. V. S. Varashenkov, New Professions of Heavy Ions [in Russian], Atomizdat, Moscow (1977).

    Google Scholar 

  58. A. Dunlop, D. Lesueur, J. Morillo, et al., C. R. Acad. Sci. (Paris),T309, Serie II, 1277 (1989).

    Google Scholar 

  59. A. Dunlop, D. Lesueur, J. Morillo, et al., Nucl. Instrum. Methods,B48, 419 (1990).

    Google Scholar 

  60. A. Audouard, E. Balanzat, G. Fuchs, et al., Europhys. Lett.,3, 327 (1991).

    Google Scholar 

  61. A. Dunlop, D. Lesueur, N. Lorenzelli, et al., J. Phys. Cond. Mater.,2, 1733 (1990).

    Google Scholar 

  62. A. Audouard, E. Balanzat, S. Bouffard, et al., Nucl. Instrum. Methods,B59/60, 414 (1991).

    Google Scholar 

  63. A. Audouard, E. Balanzat, A. Barbu, et al., Radiat. Effects and Defects in Solids,110, 113 (1989).

    Google Scholar 

  64. E. Balanzat, Radiat. Effects and Defects in Solids,126, 97 (1993).

    Google Scholar 

  65. L. Henry, A. Barbu, B. Leridon, D. Lesueur, and A. Dunlop, Nucl. Instrum. Methods,B67, 390 (1992).

    Google Scholar 

  66. A. Dunlop, P. Legrand, D. Lesueur, et al., Europhys. Lett.,15, 765 (1991).

    Google Scholar 

  67. P. Legrand, A. Dunlop, D. Lesueur, N. Lorenzelli, et al., Mater. Sci. Forum,97–99, 587 (1992).

    Google Scholar 

  68. J. P. Riviere, J. F. Dinhut, E. Paumier, and J. Dural, Nucl. Instrum. Methods,B80/81, 65 (1993).

    Google Scholar 

  69. A. Dunlop and D. Lesueur, Mater. Sci. Forum,97–99, 553 (1992).

    Google Scholar 

  70. A. Dunlop, D. Lesueur, G. Jaskierowicz, and J. Schildknecht, Nucl. Instrum. Methods,B36, 412 (1989).

    Google Scholar 

  71. A. M. Zaitsev, Mater. Sci. Eng.,B11, 179 (1992).

    Google Scholar 

  72. D. Lesueur and A. Dunlop, Radiat. Effects and Defects in Solids,126, 163 (1993).

    Google Scholar 

  73. R. H. Ritchie and C. Claussen, Nucl. Instrum. Methods,198, 133 (1982).

    Google Scholar 

  74. I. S. Bitensky and E. S. Parilis, Nucl. Instrum. Methods,B21, 26 (1987).

    Google Scholar 

  75. C. C. Watson and T. A. Tombrello, Radiat. Effects,89, 263 (1985).

    Google Scholar 

  76. F. Seitz and J. S. Koehler, Solid State Phys.,2, 305 (1956).

    Google Scholar 

  77. L. T. Chadderton and H. M. Montagu-Pollock, Proc. Roy. Soc. (London),A274, 239 (1963).

    Google Scholar 

  78. P. Legrand, J. Morillo, and V. Pontikis, Radiat. Effects and Defects in Solids,126, 151 (1993).

    Google Scholar 

  79. D. Lesueur and A. Dunlop, Radiat. Effects and Defects in Solids,126, 163 (1993).

    Google Scholar 

  80. M. Toulemonde, E. Paumier, and C. Dufour, Radiat. Effects and Defects in Solids,126, 201 (1993).

    Google Scholar 

  81. P. V. Kapitza, Philos. Mag.,45, 989 (1923).

    Google Scholar 

  82. M. I. Kaganov, I. M. Lifshitz, and L. V. Tantarov, Zh. Éksp. Teor. Fiz.,31, 232 (1956).

    Google Scholar 

  83. I. M. Lifshitz, M. I. Kaganov, and L. V. Tantarov, At. Énerg.,6, 391 (1959).

    Google Scholar 

  84. Ya. E. Geguzin, M. I. Kaganov, and I. M. Lifshitz, Fiz. Tverd. Tela (Leningrad),15, 2425 (1973).

    Google Scholar 

  85. A. I. Kalinichenko and V. T. Lazurik, Zh. Éksp. Teor. Fiz.,65, 2364 (1973).

    Google Scholar 

  86. A. A. Davydov and A. I. Kalinichenko, At. énerg.,53, 186 (1982).

    Google Scholar 

  87. A. A. Davydov and A. I. Kalinichenko, Probl. Yad. Fiz. Kosm. Luch.,26, 60 (1986).

    Google Scholar 

  88. Yu. V. Martynenko and Yu. N. Yavlinskii, Dokl. Akad. Nauk SSSR,270, 88 (1983).

    Google Scholar 

  89. I. A. Baranov, Yu. V. Martynenko, S. O. Tsepenevich, and Yu. N. Yavlinskii, Usp. Fiz. Nauk,156, 477 (1988).

    Google Scholar 

  90. V. V. Katin, Yu. V. Martynenko, and Yu. N. Yavlinskii, Interaction of Corpuscular Fluxes from the Surface of Solids [in Russian], Fan, Tashkent (1992).

    Google Scholar 

  91. A. I. Glushtsov, F. F. Komarov, A. P. Novikov, A. I. Urbanovich, and A. T. Hoang, Dokl. Akad. Nauk Belorus. SSR,31, 609 (1987).

    Google Scholar 

  92. F. F. Komarov, A. P. Novikov, and A. T. Hoang, Izv. Akad. Nauk Belorus. SSR,5, 81 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 23–40, May, 1994.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komarov, F.F. Effects of high-energy ion implantation into metals. Russ Phys J 37, 423–436 (1994). https://doi.org/10.1007/BF00560113

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00560113

Keywords

Navigation