Russian Physics Journal

, Volume 37, Issue 5, pp 410–422 | Cite as

Modeling of the impurity distribution obtained by ion implantation

  • V. G. Abdrashitov
  • V. V. Ryzhov


Models and a suite of programs (TRION, PIRSON, CHAPS, and DYCOD) that make it possible to calculate the impurity distribution for any implantation dose in a target with arbitrary composition are described. Test calculations for each program showed that the results are in good agreement with experimental data and with theoretical calculations performed by other authors. The suite of programs is intended for the development of the physical principals of ion-beam technologies.


Experimental Data Theoretical Calculation Test Calculation TRION Impurity Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Russel and I. Ruge, Ion Implantation [Russian translation], Nauka, Moscow (1983).Google Scholar
  2. 2.
    J. M. Pote (ed.), Modification and Doping of Surfaces by Laser, Ion, and Electron Beams [Russian translation], Mashinostroenie, Moscow (1987).Google Scholar
  3. 3.
    P. Chou and N. M. Ghoniem, J. Nuc. Mater.,117, 55–63 (1983).Google Scholar
  4. 4.
    F.-Z. Cui and H.-D. Li, J. Nucl. Mater.,133, 353–356 (1985).Google Scholar
  5. 5.
    G. Vezkelethy, Kozp. Fir. Kut. Inter., No. 107 (1985).Google Scholar
  6. 6.
    A. I. Mel'ker and S. N. Romanov, Zh. Tekh. Fiz.,52, No. 7, 1362–1368 (1982).Google Scholar
  7. 7.
    Y. Miyagawa and S. Miyagawa, Jpn. J. Appl. Phys.,54, No. 12, 7124–7131 (1983).Google Scholar
  8. 8.
    I. Adesida and L. Karapiperis, Rad. Eff.,61, 223–233 (1982).Google Scholar
  9. 9.
    J. P. Biersack and L. G. Haggmark, Nucl. Instrum. Methods,174, 257–269 (1980).Google Scholar
  10. 10.
    T. S. Pugacheva, O. V. Gusev, and T. L. Roslyakova, Fiz. Khim. Obrab. Material., No. 5, 22–31 (1982).Google Scholar
  11. 11.
    W. Eckstein, H. Verbeek, and J. P. Biersack, J. Appl. Phys.,51, No. 2, 1194–1200 (1980).Google Scholar
  12. 12.
    F. Schulz and K. Wittmaack, Rad. Eff.,29, 31–40 (1976).Google Scholar
  13. 13.
    H. Krautle, Nucl. Instrum. Methods,134, 167–172 (1976).Google Scholar
  14. 14.
    D. Farkas, I. L. Singer, and M. Rangaswamy, Mat. Res. Soc. Symp. Proc.,27, 609–614 (1984).Google Scholar
  15. 15.
    W. Moller and W. Eckstein, Nucl. Instrum. Methods B,2, 814–818 (1984).Google Scholar
  16. 16.
    P. S. Chou and N. M. Ghoniem, J. Nucl. Mater.,141, 216–220 (1986).Google Scholar
  17. 17.
    O. F. Goktepe, T. D. Andreadis, M. Rosen, G. P. Mueller, and M. L. Roush, Nucl. Instrum. Methods B,13, 434–438 (1986).Google Scholar
  18. 18.
    V. G. Abdrashitov and V. V. Ryzhov, Preprint No. 47, Tomsk Scientific Center, Siberian Branch of the Russian Academy of Sciences, Tomsk (1990).Google Scholar
  19. 19.
    A. F. Burenkov, F. F. Komarov, M. A. Kumakhov, and M. M. Temkin, Spatial Distributions of the Energy Released in Atomic Collision Cascadess in Solids [in Russian], Energoatomizdat, Moscow (1985).Google Scholar
  20. 20.
    V. G. Abdrashitov and V. V. Ryzhov, Preprint No. 30, Tomsk Sicnetific Center, Siberian Branch of the Russian Academy of Sciences, Tomsk (1991).Google Scholar
  21. 21.
    V. G. Abdrashitov and V. V. Ryzhov, Preprint No. 14, Tomsk Scientific Center, Siberian Branch of the Russian Academy of Sciences, Tomsk (1992).Google Scholar
  22. 22.
    R. Oven, M. D. J. Bowyer, and D. G. Ashworth, J. Phys.: Condens. Matter,5, 2157–2170 (1993).Google Scholar
  23. 23.
    V. S. Korolyuk, N. I. Portenko, A. V. Skorokhod, and A. F. Turbin, Handbook of the Theory of Probability and Mathematical Statistics [in Russian], Nauka, Moscow (1985).Google Scholar
  24. 24.
    A. G. Kurganov and G. L. Fal'ko, Poverkhn. Fiz., Khim., Mekhan., No. 1, 127–130 (1990).Google Scholar
  25. 25.
    V. S. Eremeev, Diffusion and Stress [in Russian], Énergoatomizdat, Moscow (1984).Google Scholar
  26. 26.
    U. Littmark and W. O. Hofer, Nucl. Instrum. Methods,168, 329–342 (1980).Google Scholar
  27. 27.
    M. G. Stepanova, Author's Abstract of Candidate's Dissertation in Physical and Mathematical Sciences (1992).Google Scholar
  28. 28.
    A. Yu. Zakharov and E. I. Pipka, Fiz. Tverd. Tela,23, No. 10, 3159–3163 (1981).Google Scholar
  29. 29.
    V. V. Titov, Zh. Tekh. Fiz.,49, No. 4, 844–849 (1979).Google Scholar
  30. 30.
    G. Betz, “Alloy sputtering,” Surf. Sci.,92, 283–309 (1980).Google Scholar
  31. 31.
    P. Sigmund and A. Grass-Marti, Nucl. Instrum. Methods,182–183, 25–41 (1981).Google Scholar
  32. 32.
    W. L. Johnson, Y. T. Cheng, M. Rossum, and M.-A. Nicolet, Nucl. Instrum. Methods B,7/8, 25–41 (1981).Google Scholar
  33. 33.
    Z. A. Iskranderova, T. D. Radjabov, R. Yu. Leiderman, et al., Nucl. Instrum. Methods B,14, 542–554 (1986).Google Scholar
  34. 34.
    L. Pranyavischus and Yu. Dudonis, Modification of the Properties of Solids by Ion Beams [in Russian], Mokslas, Vil'nyus (1980).Google Scholar
  35. 35.
    V. V. Titov, Preprint No. 3774/11, Institute of Atomic Energy, Moscow (1983).Google Scholar
  36. 36.
    W. K. Hofker, D. P. Oesthoek, N. J. Koeman, and H. A. de Grefte, Rad. Eff.,24, No. 3/4, 223–231 (1975).Google Scholar
  37. 37.
    H. Hyssel, G. Prinke, K. Haberger, K. Hoffmann, K. Muller, and R. Henkelmann, Appl. Phys.,24, 39–43 (1981).Google Scholar
  38. 38.
    M. Simard-Normandin and C. Slaby, J. Electrochem. Soc., 2218–2223 (1985).Google Scholar
  39. 39.
    W. Wach and K. Wittmaack, Nucl. Instrum. Methods,194, 113–116 (1982).Google Scholar
  40. 40.
    J. Cervena, V. Hnatowicz, J. Hoffmann, Z. Kosina, J. Kvitek, and P. Onheiser, Nucl. Instrum. Methods,188, 185 (1981).Google Scholar
  41. 41.
    J. F. Ziegler and B. L. Crowder, Appl. Phys. Lett.,21, 16–17 (1972).Google Scholar
  42. 42.
    P. C. Zalm, G. M. Fontijn, K. T. F. Janssen, and C. J. Vriezema, Nucl. Instrum. Methods B,42, 397–400 (1989).Google Scholar
  43. 43.
    W. Brandt and M. Kitagawa, Phys. Rev. B,25, No. 9, 5631 (1982).Google Scholar
  44. 44.
    J. F. Ziegler, J. P. Biersack, and U. Littmark in: Proceedings of the International Ion Engineering Congress, Kyoto (1983), pp. 1861–1873.Google Scholar
  45. 45.
    X. Xiangang, X. Yueyuan, and T. Chunyu, Nucl. Instrum. Methods B,51, 11–16 (1990).Google Scholar
  46. 46.
    M. J. Norgett, M. T. Robinson, and I. M. Torrens, Nucl. Eng. Design,33, 50 (1975).Google Scholar
  47. 47.
    A. F. Burenkov, F. F. Komarov, and M. M. Temkin, Rad. Eff.,69, No. 3/4, 165–177 (1983).Google Scholar
  48. 48.
    R. Berish, Sputtering of Solids Under Ion Bombardment: Physics of Sputtering of One-Element Solids [Russian translation], Mir, Moscow (1984).Google Scholar
  49. 49.
    P. Sigmund, Phys. Rev.,184, No. 2, 383–416 (1969).Google Scholar
  50. 50.
    Y. Yamamura in: Proceedings of the International Ion Engineering Congress, Kyoto (1983), pp. 1875–1886.Google Scholar
  51. 51.
    M. Rangaswamy and D. Farkas, Proc. Mat. Res. Soc. Symp.,45, 91–96 (1985).Google Scholar
  52. 52.
    H. H. Anderson, Appl. Phys.,18, 131–140 (1979).Google Scholar
  53. 53.
    F. V. Nolfi, Phase Transformations Under Irradiation [Russian translation], Metallurgiya, Chelyabinsk (1989).Google Scholar
  54. 54.
    M. A. Kumakhov and F. F. Komarov, Energy Losses and Ion Ranges in Solids [in Russian], Izd. Belorus. Gos. Univer., Minsk (1979).Google Scholar
  55. 55.
    A. R. Miedema, Phillips Tech. Rev.,36, No. 8, 217–231 (1976).Google Scholar
  56. 56.
    S. H. Han, G. L. Kulcinski, and J. R. Conrad, Nucl. Instrum. Methods B,45, 701–706 (1990).Google Scholar
  57. 57.
    O. F. Goktepe, Nucl. Instrum. Methods B,59/60, 28–32 (1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • V. G. Abdrashitov
    • 1
  • V. V. Ryzhov
    • 1
  1. 1.Institute of High-Current Electronics, Siberian BranchRussian Academy of SciencesRussia

Personalised recommendations