Russian Physics Journal

, Volume 38, Issue 4, pp 359–363 | Cite as

Propagation of a soliton-like pulse in a weakly nonlinear medium

  • V. A. Donchenko
  • Yu. A. Kreidun
  • A. V. Shapovalov
Optics And Spectroscopy


Numerical methods are used to study the decay dynamics of a soliton-like signal in a medium with a cubic nonlinearity (using the nonlinear Shrödinger equation). We consider the influence of the initial pulse area, shape, and random modulations in its amplitude and phase on the decay process, as well as the effects of absorption and pumping in the medium.


Decay Process Nonlinear Medium Initial Pulse Random Modulation Pulse Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    É. V. Lugin and A. V. Shapovalov, Izv. Vuzov. Fiz., No. 2, 36–39 (1989).Google Scholar
  2. 2.
    V. A. Donchenko, M. V. Kabanov, É. V. Lugin, et al., Opt. Atmos.,1, No. 1, 67–71 (1988).Google Scholar
  3. 3.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Soliton Theory: The Inverse Problem Method [in Russian], Nauka, Moscow (1980).Google Scholar
  4. 4.
    V. N. Karpman and E. M. Maslov, Zh. Éksp. Teor. Fiz.,73, No. 2(8), 537 (1977).Google Scholar
  5. 5.
    A. I. Maimistov, Zh. Éksp. Teor. Fiz.,104, No. 5(11), 3620–3629 (1993).Google Scholar
  6. 6.
    F. Kh. Abdullaev, S. A. Darmanyan, and P. K. Khabibulaev, Optical Solitons [in Russian], Inst. of Fiz. Akad. Nauk, Tashkent (1987).Google Scholar
  7. 7.
    J. Orlanski, J. Comp. Phys.,21, No. 3, 251–269 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • V. A. Donchenko
  • Yu. A. Kreidun
  • A. V. Shapovalov

There are no affiliations available

Personalised recommendations