Skip to main content
Log in

Wide-range equation of state of matter. II. Microfield model

  • Plasma Physics
  • Published:
Russian Physics Journal Aims and scope

Abstract

Among the models proposed for theoretically calculating wide-range equations of state of matter we single out: the ionization — chemical equilibrium model for the gas — plasma state of matter containing a qualitatively new nonidealness correction, the microfield correction; the quantum — statistical model for compressed condensed matter; the quasiband model for the transition region between these states. It is shown that, taken together, these models are in good agreement with experiments, give the most accurate equation of state in the supercritical region to date, and provide a qualitative explanation of the optical properties of matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Volokitin, I. O. Golosnoi, and N. N. Kalitkin, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 11, 23 (1994).

  2. C. F. Hooper Jr., R. C. Mancini, D. P. Kilcrease, L. A. Woltz, M. C. Richardson, D. K. Bradley, and P. A. Jaanimagi, Proc. SPIE Int. Soc. Opt. Eng.,913, 129 (1988); (Proc. Conf. on High Intensity Laser-Matter Interactions, Los Angeles, CA, January, 1988).

    Google Scholar 

  3. V. G. Sevast'yanenko, Preprint No. 30 [in Russian], Institute of Theoretical and Applied Mechanics, Siberian Branch of the Academy of Sciences of the USSR, Novosibirsk (1980).

    Google Scholar 

  4. I. I. Sobelman, Introduction to the Theory of Atomic Spectra, Pergamon Press, Oxford (1973).

    Google Scholar 

  5. G. Ecker, Theory of Fully Ionized Plasmas, Academic Press, New York (1972).

    Google Scholar 

  6. J. Holtsmark, Ann. Phys. (Leipzig),58, 577 (1919).

    Google Scholar 

  7. A. A. Broyles, Phys. Rev.,100, 1181 (1955).

    Google Scholar 

  8. Yu. K. Kurilenkov and V. S. Filinov, Teplofiz. Vys. Temp.,18, No. 4, 657 (1980).

    Google Scholar 

  9. I. O. Golosnoi, Math. Model,5, No. 6, 11 (1993).

    Google Scholar 

  10. C. A. Iglesias, J. L. Lebowitz, and D. McGowan, Phys. Rev. A,28, No. 3, 1667 (1983).

    Google Scholar 

  11. C. A. Iglesias, H. E. DeWitt, J. L. Lebowitz, D. MacGowan, and W. B. Hubbard, Phys. Rev. A,31, No. 3, 1698 (1985).

    Google Scholar 

  12. V. S. Volokitin, I. O. Golosnoi, and N. N. Kalitkin, (Papers from the FKhSV-5 Meeting), Math. Model.,5, No. 8, 71 (1993).

    Google Scholar 

  13. A. Alastuey, C. A. Iglesias, J. L. Lebowitz, and D. Levesque, Phys. Rev. A,30, No. 5, 2537 (1984).

    Google Scholar 

  14. N. N. Kalitkin, I. V. Ritus, and A. M. Mironov, Preprint No. 43 [in Russian], Institute of Applied Mathematics, Academy of Sciences of the USSR, Moscow (1983).

  15. I. O. Golosnoi, Math. Model.,4, No. 6, 3 (1992).

    Google Scholar 

  16. J. F. Springer, M. A. Pokrant, and F. A. Stevens Jr., J. Chem. Phys.,58, No. 11, (1973).

  17. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Nonrelativistic Theory [in Russian], Vol. 3 of Theoretical Physics, Nauka, Moscow (1989) [translation of previous ed. publ. by Pergamon Press, Oxford (1977)].

    Google Scholar 

  18. J. W. Dufty, D. B. Boercker, and C. A. Iglesias, Phys. Rev. A,31, No. 3, 1681 (1985).

    Google Scholar 

  19. I. O. Golosnoi and N. N. Kalitkin, Preprint No. 73 [in Russian], Institute of Applied Mathematics, Academy of Science of the USSR, Moscow (1990).

  20. I. O. Golosnoi, Math. Model.,3, No. 9, 49 (1991).

    Google Scholar 

  21. N. N. Kalitkin, Math. Model.,1, No. 2, 64 (1989).

    Google Scholar 

  22. V. S. Volokitin and N. N. Kalitkin, Preprint No. 11 [in Russian], Institute of Applied Mathematics, Academy of Sciences of the USSR, Moscow (1991).

  23. V. S. Volokitin and N. N. Kalitkin, Math. Model.,3, No. 5, 49 (1991).

    Google Scholar 

  24. V. S. Volokitin, Math. Model.,3, No. 8, 47 (1991).

    Google Scholar 

  25. V. S. Volokitin, Math. Model.,3, No. 7, 51 (1991).

    Google Scholar 

  26. N. N. Kalitkin, Mathematical Modeling: Physicochemical Properties of Matter [in Russian], Nauka, Moscow (1989), pp. 114–161.

    Google Scholar 

  27. R. M. More, J. F. Barnes, and R. D. Cowan, Bull. Am. Soc. II,21, 1153 (1976).

    Google Scholar 

  28. K. S. Holian, Report No. LA-10160-MS, Los Alamos National Laboratory, Los Alamos, NM (1985).

  29. D. A. Young, J. K. Wolford, F. J. Rogers, and K. S. Holian, Phys. Lett.,108, A, No. 3, 157 (1985).

    Google Scholar 

  30. E. N. Avrorin, B. K. Vodolaga, N. P. Voloshin, G. V. Kovalenko, V. F. Kuropatenko, V. A. Simonenko, and B. T. Chernovolyuk, Zh. Eksp. Teor. Fiz.,93, 613 (1987) [Sov. Phys. JETP,66, 347 (1987)].

    Google Scholar 

  31. N. H. March, W. Kohn, P. Kashishta, et al., Theory of a Nonuniform Electron Gas [Russian translation], Mir, Moscow (1987).

    Google Scholar 

  32. A. T. Sapozhnikov and A. V. Pershina, Vopr. At. Nauk. Tekh. Ser. Metod. Progr. Chisl. Resh. Zadach. Math. Fiz.,4, No. 6, 47 (1979).

    Google Scholar 

  33. V. F. Kuropatenko, Math. Model.,4, No. 12 112 (1992).

    Google Scholar 

Download references

Authors

Additional information

The work was performed with the financial support of the Russian Fund for fundamental research (Grant No. 93-01-861, TEFIS computer library of thermophysical properties of matter).

Deceased.

Institute of Mathematical Modeling, Russian Academy of Sciences. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 11–31, April, 1995.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volokitin, V.S., Golosnoi, I.O. & Kalitkin, N.N. Wide-range equation of state of matter. II. Microfield model. Russ Phys J 38, 336–354 (1995). https://doi.org/10.1007/BF00560096

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00560096

Keywords

Navigation