Russian Physics Journal

, Volume 35, Issue 4, pp 365–375 | Cite as

Gauge theory of wave propagation in an elastico-plastic medium

  • V. L. Popov
  • N. V. Chertova


Gauge Theory Wave Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    J. W. Taylor, Dislocation Dynamics, New York (1968), pp. 573–590.Google Scholar
  2. 2.
    J. A. Venables, Philos. Mag.,10, No. 107, 771–778 (1964).Google Scholar
  3. 3.
    N. A. En'shina, V. S. Kobytev, T. A. Shalygina, et al., Structure and Plastic Behavior of Alloys [in Russian], Izd. TGU, Tomsk (1983), pp. 163–191.Google Scholar
  4. 4.
    V. A. Likhachev, A. E. Volkov, and V. E. Shudegov, Continuum Theory of Defects [in Russian], Izd. LGU, Leningrad (1986), pp. 19–35.Google Scholar
  5. 5.
    A. Kadic and D. G. B. Edelen, A Gauge Theory of Dislocations and Disclinations, Lecture Notes in Physics, Vol. 174, Springer-Verlag, Heidelberg (1983), p. 168.Google Scholar
  6. 6.
    E. Kröner, Gauge Field Theories of Defects in Solids, Max Planck Inst., Stutgart (1982), p. 102.Google Scholar
  7. 7.
    D. S. Lagoudas and D. G. B. Edelen, Int. J. Engng. Sci.,27, No. 4, 411–431 (1989).Google Scholar
  8. 8.
    D. G. B. Edelen, Int. J. Engng. Sci.,27, No. 6, 641–652 (1989).Google Scholar
  9. 9.
    D. G. B. Edelen, Int. J. Engng. Sci.,27, No. 6, 653–666, (1989).Google Scholar
  10. 10.
    E. Kröner, Lecture Notes in Physics, Springer Verlag, Heidelberg (1986), pp. 281–296.Google Scholar
  11. 11.
    H. Kleinert, Gauge Fields in Condensed Matter, Vol. 2, World Scientific Publishing Co., Singapore (1989).Google Scholar
  12. 12.
    D. G. B. Edelen and D. C. Lagoudas, Int. J. Engng. Sci.,26, No. 8, 837–846 (1988).Google Scholar
  13. 13.
    L. D. Landau and E. M. Lifshitz, The Theory of Elasticity [in Russian], Nauka, Moscow (1987).Google Scholar
  14. 14.
    L. D. Landau and E. M. Lifshitz, Statistical Physics [in Russian], Vol. 1, Nauka, Moscow (1976).Google Scholar
  15. 15.
    E. David, R. Shall and H. Schardin, Stress Waves in Anelastic Solids, Springer-Verlag, Berlin (1964), pp. 183–192.Google Scholar
  16. 16.
    M. A. Lavrent'ev and B. V. Shabat, Problems of Hydrodynamics and Their Mathematical Models [in Russian], Nauka, Moscow (1973).Google Scholar
  17. 17.
    J. J. Gilman, Appl. Mech. Rev., 767 (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • V. L. Popov
  • N. V. Chertova

There are no affiliations available

Personalised recommendations