Advertisement

Russian Physics Journal

, Volume 35, Issue 9, pp 830–840 | Cite as

Quantum processes of propagation of electron waves in layered structures

  • G. F. Karavaev
  • S. N. Grinyaev
  • V. N. Chernyshov
Article

Abstract

The interaction of electron waves with (001) heteroboundaries in GaAs/AlAs systems is considered using the scattering matrix and pseudopotential methods. The different transmision channels of electrons through one boundary and a two-barrier structure are analyzed. It is shown that the matching matrix contains a 3×3 block of strongly interacting Γ1, X1, and X3 states. Hence a three-trough model is proposed to describe resonant tunneling processes in the corresponding structures. The matching conditions for the wave packets are analyzed. The applicability of the often-used one-through approximation of the effective mass method is analyzed. The effect of mixing of Γ and X state on the transmission coefficient is shown to be important.

Keywords

Layered Structure Wave Packet Effective Mass Transmission Coefficient Matching Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. Herman, Semiconductor Superlattices [Russian translation], Mir, Moscow (1989).Google Scholar
  2. 2.
    A. S. Tager, Electron Tech., UHF Electronics, No. 9, 21 (1987).Google Scholar
  3. 3.
    G. Bastard, Phys. Rev. B24, 5993–5997 (1981).Google Scholar
  4. 4.
    M. Altarelli, Phys. Rev. B28, 842–845 (1983).Google Scholar
  5. 5.
    D. Y. K. Ko and J. C. Inkson, Semicond. Sci. Technol.3, 791–796 (1988).Google Scholar
  6. 6.
    D. Y. K. Ko and J. C. Inkson, Phys. Rev. B38, 9945–9951 (1988).Google Scholar
  7. 7.
    K. V. Roussean, K. L. Wang, and J. N. Schulman, Appl. Phys. Lett.,54, No. 14, 1391–1393 (1989).Google Scholar
  8. 8.
    T. Ando, S. Wakahara, and H. Akera, Phys. Rev. B40, 11609–11618 (1989).Google Scholar
  9. 9.
    T. Ando and H. Akera, Phys. Rev. B40, 11618–11633 (1989).Google Scholar
  10. 10.
    C. G. Van de Walle and R. M. Martin, Phys. Rev. B35, 8154–8165 (1987).Google Scholar
  11. 11.
    S. N. Grinyaev and V. N. Chernyshov, Fiz. Tekh. Poluprovodn.26, No. 12 (1992).Google Scholar
  12. 12.
    V. A. Chaldyshev and S. N. Grinyaev, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 3, 38–61 (1983).Google Scholar
  13. 13.
    Y. C. Chang and J. N. Schulman, Phys. Rev. B25, 3975–3986 (1982).Google Scholar
  14. 14.
    U. Fano. Phys. Rev.124, 1866 (1961).Google Scholar
  15. 15.
    E. E. Mendez, W. I. Wang, E. Calleja, and C. da Silva, Appl. Phys. Lett.50, No. 18, 1263–1265 (1987).Google Scholar
  16. 16.
    E. E. Mendez, E. Calleja, and W. I. Wang, Appl. Phys. Lett.53, No. 11, 977–979 (1988).Google Scholar
  17. 17.
    L. F. Luo, R. Beresford, W. I. Wang, and E. E. Mendez, Appl. Phys. Lett.54, No. 21, 2133–2135 (1989).Google Scholar
  18. 18.
    M. Dutta, D. D. Smith, P. G. Newman, et al., Phys. Rev. B42, 1474–1477 (1990).Google Scholar
  19. 19.
    Y. Masumoto, T. Mishina, F. Sasaki, and M. Adachi, Phys. Rev. B40, 8581–8589 (1989).Google Scholar
  20. 20.
    D. Z. Y. Ting and T. C. McGill, J. Vac. Sci. Technol.7, 1031–1034 (1989).Google Scholar
  21. 21.
    X. E. Shi, Semicond. Sci. Technol.4, No. 3, 150–154 (1989).Google Scholar
  22. 22.
    H. C. Liu, Superlattices and Microstructures,7, No. 1, 35–38 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • G. F. Karavaev
  • S. N. Grinyaev
  • V. N. Chernyshov

There are no affiliations available

Personalised recommendations