Skip to main content
Log in

Amorphization of metals by ion implantation and ion mixing methods

  • Solid State Physics
  • Published:
Russian Physics Journal Aims and scope

Abstract

In this paper, we present a review of the experimentally determined characteristics of solid-phase amorphization of metals and alloys under ion implantation and ion mixing conditions. For the first time we systematically consider the characteristic features and the thermodynamic, structural, and kinetic criteria for amorphization in different metallic systems, and we demonstrate the expediency of the following classification of alloys undergoing amorphization: “metal-metalloid” systems, intermetallics, heterophase alloys, alloys with high positive heat of mixing. We compare solid-phase amorphization under conditions of bombardment by beams of charged particles, thermal mixing of the alloy components, and mechanical alloying. We consider the phase and structural states preceding amorphization and the possibilities for predicting metallic systems which can undergo amorphization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. V. Pavlov, E. J. Zorin, and D. J. Tetelbaum, Phys. Stat. Sol.,19a, 373–378 (1973).

    Google Scholar 

  2. B. A. Benyagou, A. V. Drigo, and M. Berty, Nucl. Instrum. Methods Phys. Res.,B19/20, 533–577 (1987).

    Google Scholar 

  3. G. G. Linker, Nucl. Instrum. Methods Phys. Res.,B20/21, 526–532 (1987).

    Google Scholar 

  4. G. G. Linker, A. Seidel, and M. Strehlan, Phys. Res.,8, 244–246 (1988).

    Google Scholar 

  5. A. Seidel, G. Linker, and O. Meyer, J. Less-Common Metals,145, 89–95 (1988).

    Google Scholar 

  6. G. Linker, Mater. Sci. Eng.,69, 105–110 (1985).

    Google Scholar 

  7. J. Parsotti, Chatterjee, Non-Cryst. Sol.,103, 14–20 (1988).

    Google Scholar 

  8. B. Rauschenbach, Phys. Stat. Sol.,100A, No. 2, 423–429 (1987).

    Google Scholar 

  9. P. M. Ossi, Mater. Sci. Eng.,90, 55–68 (1987).

    Google Scholar 

  10. M. Sagriv and D. Potter, Mater. Sci. Eng.,90, 81–89 (1987).

    Google Scholar 

  11. B. Rauschenbach and K. Hohmuth, Phys. Stat. Sol.,72A, 667 (1982).

    Google Scholar 

  12. W. Z. Li, Z. Al-Tamimi, and W. A. Grant, Nucl. Instrum. Methods Phys. Res.,B19/20, 566–570 (1987).

    Google Scholar 

  13. J. L. Brimhall, H. E. Kissinger, and A. R. Pelton, Radiation Eff.,90, 241 (1985).

    Google Scholar 

  14. J. L. Brimhall, H. E. Kissinger, and L. A. Charlot, Radiation Eff.,77, 273 (1983).

    Google Scholar 

  15. D. F. Pedraza, Mater. Sci. Engr.,90, 69 (1987).

    Google Scholar 

  16. P. C. Chatterlee and A. K. Batabyal, Non-Cryst. Sol.,103, 14–20 (1988).

    Google Scholar 

  17. L. Tome, A. Trakerse, and H. Bernas, Phys. Rev.,28B, 6523 (1983).

    Google Scholar 

  18. C. Cohen, A. V. Drigo, J. Chaurmot, et al., Phys. Rev.,31B, 5 (1985).

    Google Scholar 

  19. C. Cohen, A. V. Drigo, H. Bernas, et al., Phys. Rev. Lett.,48, 1193 (1982).

    Google Scholar 

  20. L. Tome, Physikalisches Institute Universität, Göttingen, Germany (1986), pp. 239–252.

  21. P. Moine, J. P. Riviere, M. O. Rualt, and R. Sinclair, Nucl. Instrum. Methods Phys. Res.,B7/8, 20–25 (1985).

    Google Scholar 

  22. F. F. Komarov and M. V. Moroshkin, Poverkhnost', No. 11, 147–151 (1983).

  23. A. G. Cullis, J. M. Poate, and J. A. Borders, Appl. Phys. Lett.,28, 316 (1976).

    Google Scholar 

  24. A. G. Cullis, J. K. Hirvonen, and J. M. Poate, Phil. Mag.,37, No. 5, 615–630 (1978).

    Google Scholar 

  25. J. Poate, J. Vac. Sci. Technol.,15, No. 5, 1636–1643 (1976).

    Google Scholar 

  26. Yu. A. Bykovskii, V. S. Kulikauskas, A. M. Markeev, et al., Poverkhnost', No. 4, 129–133 (1986).

  27. G. P. Bazhenov, S. P. Bugaev, A. D. Korotaev, et al., Dokl. Akad. Nauk SSSR,286, No. 4, 872–875 (1986).

    Google Scholar 

  28. B. X. Liu, E. Ma, J. Li, and L. J. Huang, Nucl. Instrum. Methods Phys. Res.,B19/20, 682–690 (1987).

    Google Scholar 

  29. I. Bottinger, K. Pampuss, and B. Topp, Nucl. Instrum. Methods Phys. Res.,B19/20, 616–699 (1982).

    Google Scholar 

  30. J. A. Knapp and D. M. Follstaedt, Nucl. Instrum. Methods Phys. Res.,B19/20, 611–618 (1987).

    Google Scholar 

  31. K. Saito, and M. Jwaki, J. Appl. Phys.,55, 4447–4449 (1984).

    Google Scholar 

  32. W. S. Was and J. M. Eridon, Nucl. Instrum. Methods Phys. Res.,B24/25, 557–561 (1987).

    Google Scholar 

  33. J. A. Alonso and J. M. Lpez, Materials Letters,4, Nos. 5–7, 316–319 (1986).

    Google Scholar 

  34. C. Jaonen, J. R. Riviere, and J. Delafond, Nucl. Instrum. Methods Phys. Res.,B19/20, 549–553 (1987).

    Google Scholar 

  35. L. S. Hung and J. N. Meyer, Nucl. Instrum. Methods Phys. Res.,B7/8, 676 (1985).

    Google Scholar 

  36. W. L. Johnson, Y. T. Cheng, M. Van Rossum, and M. A. Nickolet, Nucl. Instrum. Methods Phys. Res.,B7/8, 657 (1985).

    Google Scholar 

  37. D. Peak and R. S. Averbach, Nucl. Instrum. Methods Phys. Res.,B7/8, 561 (1985).

    Google Scholar 

  38. W. L. Johnson, Mater. Sci. Eng.,97, 1–13 (1988).

    Google Scholar 

  39. D. E. Luzzi and M. Meshii, J. Less-Common Metals,140, 193–210 (1988).

    Google Scholar 

  40. D. F. Pedraza, J. Less-Common Metals,140, 219–230 (1988).

    Google Scholar 

  41. W. L. Johnson, Progr. Mater. Sci.,30, 81 (1986).

    Google Scholar 

  42. D. F. Pedraza and L. K. Mansur, Nucl. Instrum. Methods Phys. Res.,B16, 203–211; 187–192 (1986).

    Google Scholar 

  43. E. P. Simonen, Nucl. Instrum. Methods Phys. Res.,B16, 198–202 (1986).

    Google Scholar 

  44. J. L. Brimhall and E. P. Simonen, Nucl. Instrum. Methods Phys. Res.,B16, 187–192 (1986).

    Google Scholar 

  45. L. J. Huang, and B. X. Liu, Nucl. Instrum. Methods Phys. Res.,B18, 256–260 (1987).

    Google Scholar 

  46. T. Burkoula, J. Jagielski, L. Thome, et al., Nucl. Instrum. Methods Phys. Res.,B80/81, 455–458 (1993).

    Google Scholar 

  47. L. S. Huang, M. Nastasi, J. Gyaloi, and J. W. Mayer, Appl. Phys. Lett.,42, 672–674 (1983).

    Google Scholar 

  48. P. M. Ossi, Rad. Eff. and Defects in Solids,108, 61–71 (1989).

    Google Scholar 

  49. M. Nastasi, L. S. Huaag, H. H. Johnson, and J. N. Mayer, J. Appl. Phys.,57, 1050–1054 (1985).

    Google Scholar 

  50. M. Nastasi, J. M. Williams, E. A. Kenik, and J. W. Mayer, Nucl. Instrum. Methods Phys. Res.,B19/20, 543–548 (1987).

    Google Scholar 

  51. G. Linker, Mater. Sci. Eng.,69, 105 (1985).

    Google Scholar 

  52. V. P. Babaev, V. G. Zabolotnyi, and V. N. Mel'nikov, Fiz. Khim. Obrab. Mater., No. 5, 6–10 (1989).

  53. Omitted in Russian original — Publisher.

  54. V. G. Zabolotnyi and V. O. Val'dner, Fiz. Khim. Obrab. Mater., No. 1, 5–7 (1993).

  55. J. P. M. Westerdorp, W. Saris, B. Koek, and M. P. A. Viegers, Nucl. Instrum. Methods Phys. Res.,B19/20, 539–540 (1987).

    Google Scholar 

  56. J. Bottinger, S. K. Nelsen, and P. T. Torsen, Nucl. Instrum. Methods Phys. Res.,B7/8, 707–710 (1985).

    Google Scholar 

  57. R. S. Averbach, D. Leak, and L. J. Thompson, Appl. Phys.,A39, 59–64 (1986).

    Google Scholar 

  58. F. Rossi and N. V. Doan, Phys. Rev.,61B, 27–37 (1991).

    Google Scholar 

  59. Diaz de la Rugia, R. S. Averback, H. Hsieh, and R. J. Benedek, Mater. Sci.,4, No. 3, 579–586 (1989).

    Google Scholar 

  60. R. S. Averback, Diaz de la Rugia, H. Hsieh, and R. Benedek, Nucl. Instrum. Methods Phys. Res.,B59/60, 709–717 (1991).

    Google Scholar 

  61. J. S. Williams and J. M. Poate, Ion Implantation and Beam Processing [Russian translation], Nauk. Dumka, Kiev (1988).

    Google Scholar 

  62. L. Csepregi, L. Mayer, and T. W. Sigmon, Phys. Lett.,54, 157 (1975).

    Google Scholar 

  63. L. M. How and M. H. Rainville, Nucl. Instrum. Methods Phys. Res.,182/183, 143 (1981).

    Google Scholar 

  64. D. J. Mazey, R. S. Nelson, and R. S. Barnes, Phil. Mag.,17, 1145 (1968).

    Google Scholar 

  65. J. R. Holland and G. D. Watkins (eds.), Radiation Effects in Semiconductors, Gordon and Breach, New York (1971).

    Google Scholar 

  66. L. T. Chadderton and F. H. Eisen, Kael. Effects.,14, 271 (1971).

    Google Scholar 

  67. L. M. Howe, M. H. Rainville, and H. K. Harigan, Nucl. Instrum. Methods Phys. Res.,170, 419 (1980).

    Google Scholar 

  68. D. Seidman, R. S. Averback, P. R. Okomoto, and B. C. Baily, Phys. Rev. Lett.,58, 900 (1987).

    Google Scholar 

  69. M. Holtz, P. Seeman, and W. Buckel, Phys. Rev. Lett.,51, 1584 (1983).

    Google Scholar 

  70. M. Jwaki, K. Yabe, M. Suzuki, and O. Nishivara, Nucl. Instrum. Methods Phys. Res.,B19/20, 150–153 (1987).

    Google Scholar 

  71. D. M. Follstaedt, J. Appl. Phys.,51, 1001–1010 (1980).

    Google Scholar 

  72. J. S. Singer and T. M. Barlak, Appl. Phys. Lett.,43, 457 (1983).

    Google Scholar 

  73. D. A. Baldwin, B. D. Sartvell, and J. L. Singer, Nucl. Instr. Methods Phys. Res.,B7/8, 49 (1985).

    Google Scholar 

  74. W. L. Johnson, Progr. Mater. Sci.,30, 81 (1986).

    Google Scholar 

  75. V. V. Rybin, Increase in Plastic Deformation and Fracture of Metals [in Russian], Metallurgiya, Moscow (1986).

    Google Scholar 

  76. R. Z. Valiev, A. V. Kormnikov, and R. R. Milyukov, Fiz. Met. Metalloved.,73, No. 4, 378–384 (1992).

    Google Scholar 

  77. Ya. I. Frenkel [J. Frenkel], Introduction to the Theory of Metals [in Russian], GNTI, Moscow (1953).

    Google Scholar 

  78. V. V. Kirsanov, L. P. Suvorov, and Yu. V. Trushin, Processes of Radiation Defect Formation in Metals [in Russian], Énergoatomizdat, Moscow (1985).

    Google Scholar 

  79. V. F. Zelenskii, I. M. Neklyudov, and T. P. Chernyaeva, Radiation Defects and Swelling of Metals [in Russian], Naukova Dumka, Kiev (1988).

    Google Scholar 

  80. P. J. Grundy, A. Ali, C. E. Christodoulides, and W. A. Grant, Thin Solid Films,58, 253 (1979).

    Google Scholar 

  81. K. Hohmuth, B. Rauschenbach, A. Kolitsch, and E. Richter, Nucl. Instrum. Methods Phys. Res.,209/210, 249 (1983).

    Google Scholar 

  82. Yu. K. Kovneristyi, É. K. Osipov, and E. A. Trefilov, Physicochemical Principles for Design of Amorphous Metallic Alloys [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  83. Yu. A. Skakov (ed.), Metallic Glasses [in Russian], Metallurgiya, Moscow (1984).

    Google Scholar 

  84. F. F. Komarov, Ion Implantation into Metals [in Russian], Metallurgiya, Moscow (1990).

    Google Scholar 

  85. G. Linker, Sol. Stat. Com.,57, 773 (1986).

    Google Scholar 

  86. T. Egami and Y. J. Waseda, Non-Cryst. Sol.,64, 113 (1984).

    Google Scholar 

  87. V. Heera and B. Rauschenbach, Phys. Res.,8, 207 (1988).

    Google Scholar 

  88. D. M. Follstaedt, Nucl. Instrum. Methods Phys. Res.,B7/8, 11 (1985).

    Google Scholar 

  89. J. M. Poate, G. Foti, and D. K. Jacobson (eds.), Surface Modification and Alloying By Laser, Ion, and Electron Beams [Russian translation], Mashinostroenie, Moscow (1987).

    Google Scholar 

  90. D. Fournier, M. O. Rualt, and R. G. Saint-Yacgus, Nucl. Instrum. Methods Phys. Res.,B19/20, 559 (1987).

    Google Scholar 

  91. M. L. Swanson, J. R. Parsons, and C. W. Hoelkey, Rad. Eff.,9, 249 (1971).

    Google Scholar 

  92. G. Thomas, H. Mori, H. Fujita, and R. Sinclair, Scr. Metall.,16, 589 (1982).

    Google Scholar 

  93. H. Mori and H. Fujita, Jpn. J. Appl. Phys.,21, 494 (1982).

    Google Scholar 

  94. D. F. Pedraza, J. Mater. Res.,1, 425 (1986).

    Google Scholar 

  95. J. P. Riviere, Rad. Eff.,33, 21 (1972).

    Google Scholar 

  96. A. D. Marwick, J. Nucl. Mater.,68, 245 (1977).

    Google Scholar 

  97. G. J. Carpenter and E. M. Schulson, J. Nucl. Mater.,23, 180 (1978).

    Google Scholar 

  98. G. J. Carpenter and E. M. Schulson, Scr. Metall.,15, 540 (1981).

    Google Scholar 

  99. A. T. Motta and D. R. Olander, Acta Met.,38, 2175–2185 (1990).

    Google Scholar 

  100. L. Thome, C. Jaouen, J. P. Riviere, and J. Delafond, Nucl. Instrum. Methods Phys. Res.,B19/20, 554–558 (1987).

    Google Scholar 

  101. H. Mori, H. Fujita, M. Tendo, and M. Fujita, Scr. Metall.,18, 783 (1984).

    Google Scholar 

  102. D. E. Luzzi, H. Mori, H. Fujita, and M. Meshii, Acta Met.,34, 629 (1986).

    Google Scholar 

  103. D. N. Seidman, M. J. Current, D. Pramanik, and C. J. Wei, Nucl. Instrum. Methods Phys. Res.,182/183, 477 (1981).

    Google Scholar 

  104. M. J. Current and D. N. Seidman, Phil. Mag.,A47, 407–433 (1983).

    Google Scholar 

  105. R. S. Averback and D. N. Seidman, Mater. Sci. Forum,15–18 (1987).

  106. M. L. Jenkins, K. H. Katerbom, and M. Wilkens, Phil. Mag.,34, 1141–1154 (1976).

    Google Scholar 

  107. M. L. Jenkins and M. Wilkens, Phil. Mag.,34, 1155–1168 (1976).

    Google Scholar 

  108. G. A. English and M. L. Jenkins, J. Nucl. Mater.,96, 347–357 (1981).

    Google Scholar 

  109. N. N. Syutkin and V. A. Ivchenko, Izv. Vuzov. Fiz., No. 5, 41–58 (1994).

  110. D. F. Pedraza, J. Mater. Res.,1, 425 (1986).

    Google Scholar 

  111. D. E. Luzzi and M. Meshii, Res. Mechanical,21, 207 (1987).

    Google Scholar 

  112. L. Kauffman and H. Nesor, Metal Trans.,5, 1623 (1974).

    Google Scholar 

  113. Abstracts: Fall Meeting of Material Research Society, Boston, Massachusetts (1990), pp. 173, 375, 379.

  114. B. X. Liu, Nucl. Instrum. Methods Phys. Res.,B7/8, 547 (1985).

    Google Scholar 

  115. Wen-Zhi Li, Z. Y. A. Al-Tamimi, and W. A. Grant, Nucl. Instr. Methods Phys. Res.,B19/20, 566 (1987).

    Google Scholar 

  116. A. G. Cullis, J. K. Hirvonen, and J. M. Poate, Phil. Mag.,37, 615–630 (1978).

    Google Scholar 

  117. R. Andrew, Phil. Mag.,35, 1153 (1977).

    Google Scholar 

  118. R. Andrew, W. A. Grant, P. J. Grundy, et al., Nature (London),262, 380 (1976).

    Google Scholar 

  119. S. R. Nagel and J. Tauc, Phys. Rev. Lett.,35, 380 (1975).

    Google Scholar 

  120. J. Tauc and S. R. Nagel, Comm. Sol. St. Phys.,7, 69 (1976).

    Google Scholar 

  121. J. P. Hirvonen, J. W. Mayer, M. Nastasi, and D. Stone, Nucl. Instrum. Methods Phys. Res.,B23, 487–497 (1987).

    Google Scholar 

  122. A. R. Miedema, Phillips Technical Review,36, 217 (1976).

    Google Scholar 

  123. R. B. Schulz and W. L. Johnson, Phys. Rev. Lett.,51, 415–418 (1983).

    Google Scholar 

  124. R. B. Schwartz and C. C. Koch, Appl. Phys. Lett.,49, 146 (1986).

    Google Scholar 

  125. W. J. Meng, C. W. Neeh, and W. L. Johnson, Mater. Sci. Eng.,97, 87 (1988).

    Google Scholar 

  126. E. J. Cotts, W. J. Meng, and W. L. Johnson, Phys. Rev. Lett.,57, 2295 (1986).

    Google Scholar 

  127. R. J. Highmore, J. E. Evetts, A. L. Greer, and R. E. Samekh, Appl. Phys. Lett.,50, 566 (1987).

    Google Scholar 

  128. B. M. Clamens and M. J. Suchoski, Appl. Phys. Lett.,47, 943 (1985).

    Google Scholar 

  129. P. Guilmin, B. Guoyt, and G. Marshall, Phys. Lett.,A109, 174 (1985).

    Google Scholar 

  130. M. Altzman, K. M. Unruh, and W. L. Johnson, J. Appl. Phys.,58, 3865–3870 (1985).

    Google Scholar 

  131. M. Altzman, J. D. Verhoeven, E. D. Gubson, and W. L. Johnston, Appl. Phys. Lett.,45, 1052 (1989).

    Google Scholar 

  132. E. Hellstern and L. Schulz, Appl. Phys. Lett.,48, 124–126 (1986).

    Google Scholar 

  133. C. Politis and W. L. Johnston, J. Appl. Phys.,60, 1147 (1986).

    Google Scholar 

  134. R. B. Schwartz, R. R. Petrich, and S. K. Saw, J. Non-Cryst. Sol.,76, 281 (1985).

    Google Scholar 

  135. C. C. Koch, O. B. Calvin, C. G. Komcey, and J. O. Scarbrough, Appl. Phys. Lett.,43, 1017 (1983).

    Google Scholar 

  136. M. Amed and D. J. Potter, Acta Met.,33, 2221–2231 (1985).

    Google Scholar 

  137. B. Rauschenbach and A. Kolitsch, Phys. Stat. Sol.,80a, 211–222 (1983).

    Google Scholar 

  138. T. Chikaya, Nippon Kin. Gakki-Shi,36, 519 (1972).

    Google Scholar 

  139. R. Leitenecker, G. Wagner, T. Lorris, et al., Mater. Sci. Eng.,A115, 229–244 (1989).

    Google Scholar 

  140. A. N. Tyumentsev, Yu. P. Pinshin, A. D. Korotaev, et al., Nucl. Instrum. Methods Phys. Res.,B80/81, 491–495 (1993).

    Google Scholar 

  141. A. N. Tyumentsev, Yu. P. Pinzhin, A. D. Korotaev, et al., Fiz. Met. Metalloved., No. 9, 125–138 (1992).

  142. A. D. Korotaev, A. É. Bekhert, and A. N. Tyumentsev, Izv. Vuzov. Fizika, No. 2, 3–9 (1994).

  143. A. D. Korotaev, A. N. Tyumentsev, and V. F. Sukhovarov, Dispersion Hardening of Refractory Metals [in Russian], Nauka, Novosibirsk (1989).

    Google Scholar 

  144. V. Ch. Gonchikov, A. N. Tyumentsev, and A. D. Korotaev, Fiz. Met. Metalloved.,63, 598–603 (1987).

    Google Scholar 

  145. A. D. Korotaev, A. N. Tyumentsev, V. Ch. Gonchikov, and A. I. Olemskoi, Izv. Vuzov. Fizika, No. 3, 81–92 (1991).

  146. A. D. Korotaev, Yu. R. Kolobov, G. A. Mesyats, et al., Dokl. Akad. Nauk SSSR,826, 872–875 (1986).

    Google Scholar 

  147. Z. H. Yan, B. X. Liu, and H. D. Li, Phys. Stat. Sol.,94A, 483 (1986).

    Google Scholar 

  148. B. X. Liu, W. L. Johnson, M. A. Nikolet, and S. S. Lau, Nucl. Instrum. Methods Phys. Res.,209/210, 229 (1983).

    Google Scholar 

  149. K. T. Y. Kung, B. X. Liu, and M. A. Nikolet, Phys. Stat. Sol.,77A, 355 (1983).

    Google Scholar 

  150. B. Y. Tsaur, S. S. Lau, L. S. Hung, and J. W. Mayer, Nucl. Instrum. Methods Phys. Res.,182/183, 67 (1981).

    Google Scholar 

  151. F. V. Nolfi, Jr., Phase Transformations During Irradiation [Russian translation], Metallurgiya, Chelyabinsk (1989), p. 30.

    Google Scholar 

  152. V. I. Trefilov, Yu. V. Mil'man, and S. A. Firstov, Physical Principles of the Strength of Refractory Metals [in Russian], Naukova Dumka, Kiev (1975), p. 315.

    Google Scholar 

  153. P. J. Wilkes, Nucl. Mater.,83, 166–175 (1979).

    Google Scholar 

  154. D. M. Follstaedt, Nucl. Instrum. Methods Phys. Res.,B7/8, 11–19 (1985).

    Google Scholar 

  155. J. S. Singer and T. M. Barlak, Appl. Phys. Lett.,43, 457–459 (1983).

    Google Scholar 

  156. Y. Fuzuki, Y. Miroze, and M. Iwaki, Phys. Res.,8, 222–224 (1988).

    Google Scholar 

  157. D. A. Baldwin, B. D. Sartwell, and J. L. Singer, Nucl. Instrum. Methods Phys. Res.,7/8, 49–53 (1985).

    Google Scholar 

  158. M. Iwaki, K. Yabe, and M. Suzuki, Nucl. Instrum. Methods Phys. Res.,B19/20, 150–153 (1987).

    Google Scholar 

  159. C. Cohen, A. Benyagoub, H. Bernas, et al., Phys. Rev.,B31, 5 (1985).

    Google Scholar 

  160. A. Benyagoub and L. Thome., Phys. Rev.,B38, 10205 (1988).

    Google Scholar 

Download references

Authors

Additional information

V. D. Kuznets Siberian Physicotechnical Institute, Tomsk University. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 3–30, August, 1994.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korotaev, A.D., Tyumentsev, A.N. Amorphization of metals by ion implantation and ion mixing methods. Russ Phys J 37, 703–724 (1994). https://doi.org/10.1007/BF00559864

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00559864

Keywords

Navigation