Skip to main content
Log in

Sintering at a controlled rate as a method for regulating the microstructure of ceramics and similar sintered materials

  • Papers For The International Seminar ‘Physics Of Sintering And Diffusion Processes Devoted To The Memory Of Ya. E. Geguzin’, 11–12 May, 1993, Kiev
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

This review is devoted to rate-controlled sintering (RCS) problems. It is shown that nonlinear nonisothermal sintering provides dense fine-grained materials based on ultrafine and submicron powders of different substances and mixtures of them. The theoretical and procedural bases of RCS as well as possible methods for a priori determination of its major parameter, i.e., maximum safe rate, are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. V. A. Ivensen, Sintering Phenomenology [in Russian], Metallurgiya, Moscow (1985).

    Google Scholar 

  2. J. Wong and R. Raj, “Estimation of the activation energies for boundary diffusion from rate controlled sintering of pure alumina doped with zirconia or titania,” J. Amer. Ceram. Soc.,73, No. 5, 1172–1175 (1990).

    Google Scholar 

  3. D. Lynn Johnson, “Ultra-rapid sintering of ceramics,” Proc. of the 7th World Round Table Conf. on Sintering, Plenum Press, New York (1989).

    Google Scholar 

  4. H. Palmour III and D. R. Johnson, “Phenomenological model for rate-controlled sintering,” in: Sintering and Related Phenomena, Gordon and Breach Publ., New York (1967).

    Google Scholar 

  5. T. T. Feng and H. Palmour III, “Useful extension of the statistical theory of sintering,” Ceram. Int.15, 329–335 (1989).

    Google Scholar 

  6. H. Palmour III and T. M. Hare, “Rate controlled sintering revisited,” Proc. 6th World Round Table Conf. on Sintering, Plenum Press, New York (1987).

    Google Scholar 

  7. R. Oberacker, K. Dorfschmidt, T. Liu, and S. Thummler, “Application of the rate-controlled sintering in the production of ZrO2-base ceramic materials,” Ibid.

    Google Scholar 

  8. H. Palmour III, “Rate-controlled sintering technology for PM and composites,” Powder Metal Report, No. 9, 572–579 (1988).

  9. H. Palmour III, “Rate-controlled sintering of ceramics and selected powder metals,” Proc. of the 7th World Round Table Conf. on Sintering, Plenum Press, New York (1989).

    Google Scholar 

  10. H. Palmour III and M. L. Huckabee, “Studies in densification dynamics,” in: Materials Science Research, Vol. 6, Plenum Press, New York (1973).

    Google Scholar 

  11. A. D. Batchelor, M. J. Paisley, T. M. Hare and H. Palmour III, “Precision digital dilatometry: a microcomputer-based approach to sintering studies,” in: Material Science Research, Vol. 17, Plenum Press, New York (1984).

    Google Scholar 

  12. R. F. Speyer, L. Echeverrik, and Chung Kook Lee, “A shrinkage rate-controlled sintering dilatometry,” J. Mater. Sci. Lett.,11, 1089–1092 (1992).

    Google Scholar 

  13. H. Palmour III and T. M. Hare, “Sintering of SYNROC: case history for phase formation and densification of complex oxide systems,” Mat. Sci. Monographs, Vol. 14, Elsevier, Amsterdam (1982).

    Google Scholar 

  14. M. Huckabee and H. Palmour III, “Rate-controlled sintering of fine-grained alumina,” Amer. Ceram. Soc. Bull,51, No. 7, 574–576 (1972).

    Google Scholar 

  15. T. M. Hare, K. L. More, A. D. Batchelor, and H. Palmour III, “Sintering behavior of overcompacted shock-conditioned alumina powder,” Materials Sci. Research, Vol. 16, Plenum Press, New York (1984).

    Google Scholar 

  16. S. Pejovnik, T. M. Hare, A. Kingon, et al., “Sintering and microstructure development in superconducting YBa2Cu3O7-δ” in: Sintering '87, Elsevier, London-New York-Tokyo (1989).

    Google Scholar 

  17. J. M. Lihrman, P. Halary, E. Kostik, and H. Shubert, “Rate-controlled sintering of SiC with additions of a) Al2O3 + Y2O3, b) B + C, c) B4C + C,” Proc. of the 7th World Round Table Conf. on Sintering, Plenum Press, New York (1989).

    Google Scholar 

  18. A. V. Ragulya and V. V. Skorokhod, “Application of rate-controlled modes to sintering of ultrafine nickel powder,” Acta Metall. Mat., (1994), accepted for publication.

  19. V. V. Skorokhod and A. V. Ragulya, “Evolution of the pore structure during nonisothermal sintering of fine powders,” Ibid (1994), accepted for publication.

  20. R. A. Andrievskii and S. É. Zeer, “Zonal isolation during sintering of ultrafine nickel powder,” Poroshk. Metal., No. 7 (1985).

  21. R. A. Andrievskii and S. É. Zeer, “Specific contact phenomena during sintering of ultrafine powders,” Science of Sintering,19, No. 1, 11–16 (1987).

    Google Scholar 

  22. R. A. Andrievskii and S. É. Zeer, “Change in the properties of ultrafine powders of nickel and copper during storage,” Poroshk. Metal., No. 10 (1985).

  23. V. I. Novikov, L. I. Trusov, V. N. Lapovok, and T. P. Geleishvili, “Recrystallization mechanism of sintering ultrafine powders,” Poroshk. Metal., No. 5, 28–33 (1984).

  24. Y. Sakka, S. Ohno, H. Okuyama, and M. Azawa, “Synthesis and characterization of the mixed and composite NiTiN ultrafine particles,” Proc. of the 7th World Round Table Conf. on Sintering, Plenum Press, New York (1989).

    Google Scholar 

  25. H. Palmour III, M. L. Huckabee, and T. M. Hare, “Rate-controlled sintering: Principles and practice,” Proc. 4th World Round Table Conf. on Sintering Vol. 4, Elsevier, Amsterdam (1979).

    Google Scholar 

Download references

Authors

Additional information

Institute of Materials Science Problems, Ukrainian Academy of Sciences, Kiev. Translated from Poroshkovaya Metallurgiya, Nos. 3–4, pp. 1–10, March–April, 1994.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skorokhod, V.V., Ragulya, A.V. Sintering at a controlled rate as a method for regulating the microstructure of ceramics and similar sintered materials. Powder Metall Met Ceram 33, 109–117 (1995). https://doi.org/10.1007/BF00559765

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00559765

Keywords

Navigation