Powder Metallurgy and Metal Ceramics

, Volume 32, Issue 3, pp 268–273 | Cite as

Mechanical properties of isotropic porous materials. I. Elastic and rheological properties

  • M. S. Koval'chenko
Powder Materials, Articles, And Coatings

Keywords

Mechanical Property Rheological Property Porous Material Isotropic Porous Material 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    T. D. Shermergor, Theory of Elasticity of Microinhomogeneous Media [in Russian], Nauka, Moscow (1977).Google Scholar
  2. 2.
    Z. Hashin and S. Shtrikman, ”A variational approach to the theory of the elastic behavior of multiphase materials,” J. Mech. Phys. Sol.,11, No. 2, 127–140 (1963).Google Scholar
  3. 3.
    J. K. Mackenzie. ”The elastic constants of a solid containing spherical holes,” Proc. Phys. Soc.,B63, No. 1, 2–11 (1950).Google Scholar
  4. 4.
    V. V. Skorokhod, ”Calculation of the isotropic elastic moduli of disperse solid mixtures,” Poroshk. Metall., No. 1, 50–55 (1961).Google Scholar
  5. 5.
    R. Hill, ”A self-consistent mechanics of composite material,” J. Mech. Phys. Sol.,13, No. 4, 213 (1965).Google Scholar
  6. 6.
    B. Budiansky, ”On the elastic moduli of some heterogeneous materials,” J. Mech. Phys. Sol.,13, No. 4, 223 (1965).Google Scholar
  7. 7.
    B. Budiansky and R. J. O'Connel, ”Elastic moduli of a cracked solid,” Int. J. Solids Structures,12, No. 2, 81–97 (1976).Google Scholar
  8. 8.
    G. P. Tandon and G. J. Weng, ”Average stress in the matrix and effective moduli of randomly oriented composites,” Compos. Sci. Tech.,27, No. 2, 111–132 (1986).Google Scholar
  9. 9.
    Y. H. Zhao, G. P. Tandon, and G. J. Weng, ”Elastic moduli for a class of porous materials,” Acta Mech.,76, No. 1–2, 105–136 (1989).Google Scholar
  10. 10.
    Y. Takao and M. Taya, ”The effect of a variable fiber aspect ratio on the stiffness and thermal expansion coefficient of a short fiber composite,” J. Compos. Mater.,21, No. 2, 140–156 (1987).Google Scholar
  11. 11.
    J. D. Eshelby, ”The determination of the elastic field of an ellipsoidal inclusion and related problems,” Proc. R. Soc.,A241, No. 1226, 376–396 (1957).Google Scholar
  12. 12.
    H. Doi, Elastic and Plastic Properties of WC-Co Composite Alloys, Freund Publishing House, Tel Aviv (1974).Google Scholar
  13. 13.
    L. D. Landau and E. M. Lifshits, Theory of Elasticity [in Russian], Nauka, Moscow (1965).Google Scholar
  14. 14.
    M. Shlesar and M. Petrdlik, ”Investigation of the sintering process and of the mechanical properties of sintered materials in Czechoslovakia,” Poroshk. Metall., No. 5, 95–103 (1981).Google Scholar
  15. 15.
    A. N. Nikolenko and M. S. Koval'chenko, ”Analysis of the random packing of identical particles,” Poroshk. Metall., No. 11, 38–41 (1985); No. 12, 38–40 (1985); No. 1, 20–32 (1986); No. 2, 22–26 (1986).Google Scholar
  16. 16.
    A. N. Nikolenko and M. S. Koval'chenko, ”Hierarchic structure, levels of description, classification of models, and analysis of processes of compaction of powder materials,” Poroshk. Metall., No. 6, 29–33 (1989).Google Scholar
  17. 17.
    R. Cytermann, Contiguity and properties of porous materials, in: Proc. Conf. Fragm., Form. and Flow Fract. Media, Bristol (1986), pp. 458–472.Google Scholar
  18. 18.
    A. G. Zherdin, Yu. N. Podrezov, S. A. Firstov, and L. T. Shtyka, ”The effect of porosity on microplastic-deformation in iron-base powder materials,” Poroshk. Metall., No. 7, 79–84 (1989).Google Scholar
  19. 19.
    G. Lamb, Hydrodynamics [Russian translation], Gostekhizdat, Moscow (1947).Google Scholar
  20. 20.
    V. V. Skorokhod, The Rheological Fundamentals of the Theory of Sintering [in Russian], Naukova Dumka, Kiev (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • M. S. Koval'chenko

There are no affiliations available

Personalised recommendations