Advertisement

Russian Physics Journal

, Volume 37, Issue 9, pp 799–814 | Cite as

Coulomb collisions and the bound-electron recombination distribution function

  • A. N. Tkachev
  • S. I. Yakovlenko
Plasma Physics
  • 15 Downloads

Abstract

A detailed analysis is made of how the distribution function of bound electrons is formed in the presence of three-bodyi—e—e recombination. The kinetic K matrix is obtained, characterizing the number of transitions from one energy range to another due to Coulomb collisions. It is found to have a pole of the third order in the magnitude of the transferred energy. This makes it possible to transform from the balance equation described by the K matrix to the Fokker — Planck equation describing diffusion and drift along the energy axis. Numerical solution of the time-dependent Fokker — Planck equation demonstrates that the characteristic relaxation time of the bound-electron distribution function is the time interval between Coulomb collisions. A comparison with previous computer modeling of the distribution function from first principles demonstrates that these results cannot be in agreement without rejecting the principle of detailed balance in its present formulation for a Coulomb plasma. This agrees with the conclusions previously reached in a computer modeling of the properties of a classical Coulomb plasma.

Keywords

Distribution Function Recombination Relaxation Time Detailed Analysis Computer Modeling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Maiorov, A. N. Tkachev, and S. I. Yakovlenko, Izv. Vyssh. Uchebn. Zaved. Fiz., No. 11, 3 (1991).Google Scholar
  2. 2.
    S. A. Maiorov, A. N. Tkachev, and S. I. Yakovlenko, Izv. Vyssh. Uchebn. Zaved. Fiz., No. 2, 10 (1992); in: Nonequilibrium Plasma of Multiply Charged Ions [in Russian], S. I. Yakovlenko (ed.), Proceedings of the General Physics Institute, Russian Academy of Sciences, Vol. 40, Nauka, Moscow (1992), p. 142.Google Scholar
  3. 3.
    S. A. Mairov, A. N. Tkachev, and S. I. Yakovlenko, Izv. Vyssh. Uchebn. Zaved. Fiz., No. 11, 76 (1992).Google Scholar
  4. 4.
    S. A. Mairov, A. N. Tkachev, and S. I. Yakovlenko, Izv. Vyssh. Uchebn. Zaved. Fiz., No. 1, 68 (1993); Preprint No. 21 [in Russian], General Physics Institute, Russian Academy of Sciences, Moscow (1993).Google Scholar
  5. 5.
    S. A. Maiorov, A. N. Takachev, and S. I. Yakovlenko, Mat. Model.4, No. 7, 3 (1992).Google Scholar
  6. 6.
    D. Maier and M. Geppert-Maier, Statistical Physics [in Russian], Nauka, Moscow (1980).Google Scholar
  7. 7.
    N. N. Bogolyubov and N. N. Bogolyubov Jr., Introduction to Quantum Statistical Mechanics [in Russian], Nauka, Moscow (1984).Google Scholar
  8. 8.
    A. N. Tkachev and S. I. Yakovlenko, Preprint No. 10 [in Russian], General Physics Institute, Russian Academy of Sciences, Moscow (1993).Google Scholar
  9. 9.
    A. N. Tkachev and S. I. Yakovlenko, Preprint No. 18 [in Russian], General Physics Institute, Russian Academy of Sciences, Moscow (1993).Google Scholar
  10. 10.
    S. I. Yakovlenko, Vopr. Filos., No. 2, 141 (1992).Google Scholar
  11. 11.
    N. N. Moiseev, Vopr. Filos., No. 11, 25 (1992).Google Scholar
  12. 12.
    D. V. Sivukhin, in: Reviews of Plasma Physics, Vol. 4, M. A. Leontovich (ed.), Consultants Bureau, New York (1964), p. 81.Google Scholar
  13. 13.
    M. Gryziński, Phys. Rev.115, No. 2, 374 (1959).Google Scholar
  14. 14.
    L. D. Landau and E. M. Lifshitz, Mechanics, 3rd ed., Pergamon Press, Oxford (1976).Google Scholar
  15. 15.
    M. A. Leontovich, Introduction to Thermodynamics. Statistical Physics [in Russian], Nauka, Moscow (1983).Google Scholar
  16. 16.
    W. Nernst, Z. Phys. Chem.,2, 613 (1888).Google Scholar
  17. 17.
    J. S. Townsend, Philos. Trans. R. Soc. London,193, 129 (1899).Google Scholar
  18. 18.
    A. Einstein, Ann. Phys.,17, 549 (1905).Google Scholar
  19. 19.
    A. A. Vlasov, Many Particle Dynamics [in Russian], GITTL, Moscow (1950).Google Scholar
  20. 20.
    N. N. Bogolyubov, Collected Works, Vol. 2 [in Russian], Naukova Dumka, Kiev (1970).Google Scholar
  21. 21.
    J. J. Thomson, Philos. Mag.,47, 377 (1924).Google Scholar
  22. 22.
    S. T. Belyaev and G. I. Budker, in: Plasma Physics and the Problem of Controlled Thermonuclear Reactions, M. A. Leontovich (ed.), Vol. 3, Pergamon Press, Oxford (1959), p. 45.Google Scholar
  23. 23.
    A. V. Gurevich, Geomagn. Aeron.,4, 3 (1964).Google Scholar
  24. 24.
    A. V. Gurevich and L. P. Pitaevskii, Zh. Éksp. Teor. Fiz.,46, 1281 (1964).Google Scholar
  25. 25.
    A. N. Tkachev and S. I. Yakovlenko, Kratk. Soobshch. Fiz., No. 7, 10 (1990).Google Scholar
  26. 26.
    S. Chandrasekhar and J. von Neumann, Astrophys. J.,95, 489 (1942).Google Scholar
  27. 27.
    S. Chandrasekhar and J. von Neumann, Astrophys. J.,97, No. 1, 1 (1943).Google Scholar
  28. 28.
    V. I. Kogan and A. D. Selidovkin, Beitr. Plasma Physik,9, No. 3, 199 (1969).Google Scholar
  29. 29.
    V. I. Kogan, in: Plasma Physics and the Problem of Controlled Thermonuclear Reactions, M. A. Leontovich (ed.), Vol. 4, Pergamon Press, Oxford (1959), p. 305.Google Scholar
  30. 30.
    S. A. Maiorov, A. N. Tkachev, and S. I. Yakovlenko, Opt. Spektrosk.71, 921 (1991); in: Nonequilibrium Plasma of Multiply Charged Ions [in Russian] S. I. Yakovlenko (ed.), Proceedings of the General Physics Institute, Russian Academy of Sciences, Vol. 40, Nauka, Moscow (1992), p. 142.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • A. N. Tkachev
  • S. I. Yakovlenko

There are no affiliations available

Personalised recommendations