Powder Metallurgy and Metal Ceramics

, Volume 33, Issue 7–8, pp 431–436 | Cite as

Calculation of the linear elastic modulus of polydispersed sintered composites

  • Yu. P. Zarichnyak
  • S. S. Ordan'yan
  • A. N. Sokolov
  • E. K. Stepanenko
Methods Of Investigation And Properties Of Powder Materials
  • 29 Downloads

Abstract

A sintered composite material consisting of a two-component mixture of powders with different particle sizes was investigated. It was assumed that a layer with different mechanical properties formed at the component interfaces. A structural model and method of calculating the linear elastic modulus of the composite was proposed. Calculated results were compared with experimental data. It is shown that the properties of this class of materials can be predicted using the proposed model and method of calculation.

Keywords

Particle Size Experimental Data Mechanical Property Elastic Modulus Composite Material 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. A. Fridlender, V. S. Neshpor, S. S. Ordan'yan, and V. I. Unrod, “Heat and temperature conductivity of binary ZrC-ZrB2 binary alloys at high temperatures,” Tekh. Vys. Temp.,17 No. 6, 1210–1215 (1979).Google Scholar
  2. 2.
    G. Herrman, G. Gleiter, and G. Bero, “Investigation of low energy grain boundaries,” in: Atomnaya Structura Mezhfaznykh Granits [Russian translation], Mir, Moscow (1979), pp. 180–197.Google Scholar
  3. 3.
    M. A. Kuznkova, P. S. Kislyi and O. V. Pshenichnaya, “Structure and composition of composite materials based on the nitrides of Ti, Zr, and Al,” Izv. Akad. Nauk. SSSR, Neorg. Mater.,12 No. 3, 430–434 (1976).Google Scholar
  4. 4.
    Yu. N. Fil'k, E. D. Mnatsakanyan, S. S. Ordan'yan, et al., “Investigation of the properties of hot-pressed composite materials in the TiN-Al2O3 system produced from fine aluminum oxide powder and plasmochemical titanium nitride,” Poroshk. Metall., No. 7, 61–65 (1981).Google Scholar
  5. 5.
    G. A. Van Fo Fy, Theory of Reinforcing Materials, [in Russian], Naukova Dumka, Kiev (1971)Google Scholar
  6. 6.
    T. D. Shermergor, Theory of Elasticity of Microinhomogeneous Media, [in Russian], Nauka, Moscow (1977).Google Scholar
  7. 7.
    V. V. Novikov, “On determining the effective elastic moduli of inhomogeneous materials,” PMTF, No. 5, 146–153 (1985).Google Scholar
  8. 8.
    D. Sendetski, “Elastic properties of inhomogeneous systems,” in Mechanics of Composite Materials [Russian translation], Mir, Moscow (1978), pp. 60–101.Google Scholar
  9. 9.
    D. P. Volkov and Yu. P. Zarichnyak, “Modeling the structure and calculating the thermal conductivity of polydispersed granular systems,” Inzh.-Fiz. Zh.,41 No. 4, 601–606 (1981).Google Scholar
  10. 10.
    D. P. Volkov, G. N. Dul'nev, Yu. P. Zarichnyak, and B. L. Muratova, “Theory of flow and conductivity of inhomogeneous systems,” ibid.,46 No. 2, 247–252 (1984).Google Scholar
  11. 11.
    B. I. Shklovskii and A. L. Éfros, “Theory of flow and conductivity of inhomogeneous media (Review),” Usp. Fiz. Nauk.,117 No. 5, 401–435 (1975).Google Scholar
  12. 12.
    Yu. P. Zarichnyak, S. S. Ordan'yan, A. N. Sokolov, and E. K. Stepanchenko, “Analysis of size effects in percolation processes,” Poroshk. Metall., No. 7, 64–71 (1986).Google Scholar
  13. 13.
    G. N. Dul'nev and Yu. P. Zarichnyak, Thermal Conductivity of Mixtures and Composite Materials [in Russian], Énergiya, Leningrad (1974).Google Scholar
  14. 14.
    Yu. P. Zarichnyak, “Generalization of data on the dependence of coordination number on porosity and type of grain stacking,” Inzh.-Fiz. Zh.,38 No. 5, 862–865 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Yu. P. Zarichnyak
  • S. S. Ordan'yan
  • A. N. Sokolov
  • E. K. Stepanenko

There are no affiliations available

Personalised recommendations