Powder Metallurgy and Metal Ceramics

, Volume 33, Issue 7–8, pp 357–365 | Cite as

Role of plastic deformation in sintering covalent crystals (review)

  • V. I. Trefilov
  • Yu. V. Mil'man
  • I. V. Gridneva
Theory And Technology Of Sintering, Thermal And Chemicothermal Treatment


Plastic Deformation Covalent Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. J. McQueen, “The production and utility of recovered dislocation substructures,” Metal. Trans.,8, No. 6, 807–824 (1977).Google Scholar
  2. 2.
    M. L. Bernshtein, Structure of Deformed Crystals, [in Russian], Metallurgiya, Moscow (1977).Google Scholar
  3. 3.
    V. I. Trefilov, Yu. V. Mil'man, and S. A. Firstov, Physical Fundamentals of the Strength of Refractory Metals [in Russian], Naukova Dumka, Kiev (1975).Google Scholar
  4. 4.
    Yu. V. Mil'man, “Structural aspects of warm and cold deformation of crystalline materials,” Metalloved. Term. Obrab. Met., No. 6, 2–6 (1985).Google Scholar
  5. 5.
    V. I. Trefilov, Yu. V. Milman, and I. V. Gridneva, “Characteristic temperature of deformation of crystalline materials,” Cryst. Res. Technol.,19, No. 3, 413–421 (1984).Google Scholar
  6. 6.
    I. V. Gridneva, E. R. Dobrovinskaya, D. V. Lotsko, et al., “Mobility of dislocations in a corundum single crystal,” Izv. Akad. Nauk SSSR, Ser. Neorg. Mater., No. 10, 2134–2138 (1991).Google Scholar
  7. 7.
    A. N. Vergazov, V. A. Likhachev, and V. V. Rybin, “Examination of the fragmented structures formed in molybdenum in active plastic deformation,” Fiz. Met. Metalloved.,42, No. 6, 1241–1246 (1976).Google Scholar
  8. 8.
    V. I. Trefilov, Yu. V. Mil'man, R. K. Ivashshenko, et al., Structure, Texture, and Mechanical Properties of Deformed Molybdenum Alloys [in Russian], Naukova Dumka, Kiev (1983).Google Scholar
  9. 9.
    I. F. Kazo, I. V. Gridneva, Yu. V. Mil'man, and V. I. Trefilov, “Effect of structural parameters on deformation and failure of covalent crystals,” Metallofizika,2, No.5, 56–64 (1980).Google Scholar
  10. 10.
    R. A. Andrievsky, “On the temperature dependence of densification in sintering,” Sci. Sinter.,16, No. 1, 3–6 (1984).Google Scholar
  11. 11.
    F. R. Nabarro, “Deformation of crystals by the motion of single ions,” in: Reports of a Conference on Strength of Solids (Bristol 7–9 July 1947), The Physical Soc. of London, Cambridge, (1948), pp. 75–90.Google Scholar
  12. 12.
    C. Hering, “Diffusional viscosity of a polycrystalline solid,” J. Appl. Phys,21, No. 5, 437–445 (1950).Google Scholar
  13. 13.
    I. M. Lifshits, “Theory of dynamic-viscose yielding of polycrystalline solids,” Zh Éksp. Teor. Fiz.,44, 1349–1357 (1963).Google Scholar
  14. 14.
    R. L. Coble, “A model for boundary diffusion controlled creep in polycrystalline materials,” J. Appl. Phys.,34, 1679 (1963).Google Scholar
  15. 15.
    M. F. Ashby and R. A. Verrall, “Diffusion-accommodated flow and superplasticity,” Acta. Met.,21, No. 2, 149–158 (1973).Google Scholar
  16. 16.
    Ya. E. Geguzin, Geguzin, Physics of Sintering [in Russian], Nauka, Moscow (1984).Google Scholar
  17. 17.
    Ya. E. Geguzin, A. S. Dzyuba, and V. P. Matsokin, “Dislocation structures formed in the contact zone of two single crystals,” Ukr. Fiz. Zh.,29, No. 9, 1419–1422 (1984).Google Scholar
  18. 18.
    Ya. E. Geguzin, A. K. Emets, V. G. Kononenko, and D. V. Pluzhnikova, “Dislocation mechanism of high-temperature deformation of elements of the roughness of compressed real surfaces,” Poroshk. Metall., No. 6, 35–42 (1982).Google Scholar
  19. 19.
    W. Schatt, “Untersudningen an kupfer-einkristall sintermodellen,” Kristall und Technik,10, No. 9, 845–854 (1975).Google Scholar
  20. 20.
    W. Schatt and E. Friedrich, “Versetzungsbildung wahrend des sinterns,” Planseeberichte fur Pulvermetallurgie,23, No. 3, 145–156 (1977).Google Scholar
  21. 21.
    W. Schatt and E. Friedrich, “Crystal research and technology,” in: Physics of Sintering [in Russian], Ya. Geguzin (ed.), Nauka, Moscow (1984).Google Scholar
  22. 22.
    E. Friedrich and W. Schatt, “Sintering of one-component model systems: nucleation and movement of dislocations in necks,” Powder Met.,23, No. 4, 193–197 (1980).Google Scholar
  23. 23.
    W. Schatt and E. Friedrich, “Vergetzungsverrvielfachung als sinterreaktion,” Z. Metallkunde,73, No. 1, 56–63 (1982).Google Scholar
  24. 24.
    M. P. Poire, High-Temperature Plasticity of Crystalline Solids [Russian translation], Metallurgiya, Moscow (1982).Google Scholar
  25. 25.
    F. Garofalo, Laws of Creep and Long-Term Strengths of Metals [Russian translation], Metallurgiya, Moscow (1968).Google Scholar
  26. 26.
    I. Weertman, “Steady-state creep of crystals,” J. Appl. Phys.,28, No. 10, 1185–1189 (1957).Google Scholar
  27. 27.
    M. F. Ashby, “A first report of deformation-mechanism maps,” Acta Met.,20, No. 7, 887–902 (1972).Google Scholar
  28. 28.
    V. I. Trefilov, Yu. V. Mil'man, and I. V. Gridneva, “Mechanical properties of covalent crystals,” Izv. Akad Nauk SSR, Ser. Neorg. Mater.,20, No. 6, 958–966 (1984).Google Scholar
  29. 29.
    V. I. Trefilov and Yu. V. Mil'man, “Physical nature of the temperature dependence of the yield limit,” in: Fracture Mechanisms of Metals [in Russian], Naukova Dumka, Kiev (1966), pp. 59–76.Google Scholar
  30. 30.
    S. Erdmann-Jesnitzer and F. Günther, “Gesetzmässigkeiten bei verwachsungsvorgängen von kristallen. II. Rontegenographische untersuchungen an verklebten steinsalzkristallen,” Z. Metallkunde,46, No. 12, 801–809 (1955).Google Scholar
  31. 31.
    Yu. I. Boiko and R. B. Lakhterman, “Stresses formed in diffusion sintering sets of real powder particles,” Poroshk. Metall., No. 8, 31–34 (1976).Google Scholar
  32. 32.
    W. Schatt and E. Friedrich, “Dislocation-activated sintering processes,” in: Sintering-85, Plenum Press, New York, London, (1987), pp. 133–141.Google Scholar
  33. 33.
    G. C. Kuczynski, “Study of sintering of glass,” J. Appl. Phys.,20, 1160–1169 (1949).Google Scholar
  34. 34.
    N. E. Exner, Principles of Single Phase Sintering, Frend Publ. House, Tel Aviv (1979).Google Scholar
  35. 35.
    I. P. Arsentyeva and M. M. Ristič, “Dislocation structure of nickel powder and its role in the sintering process,” in: Sintering 85, Plenum Press, New York-London, (1987), pp. 59–65.Google Scholar
  36. 36.
    K. A. Christiansen and A. R. Thölen, “Twin formation during sintering of micron and submicron sized copper particles,” in: Sintering 85, Plenum Press, New York-London, (1987), pp. 69–79.Google Scholar
  37. 37.
    Yu. V. Mil'man, I. V. Gridneva, V. A. Goncharuk, et al., “Effect of temperature on the failure mechanisms and mechanical properties of semiconductor compounds of the type AIIBVI,” Fiz. Khim. Obrab. Mater., No. 2, 128–133 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • V. I. Trefilov
  • Yu. V. Mil'man
  • I. V. Gridneva

There are no affiliations available

Personalised recommendations