Advertisement

Russian Physics Journal

, Volume 38, Issue 1, pp 1–4 | Cite as

Band structure and optical properties of alkali metal halides

  • A. B. Gordienko
  • Yu. N. Zhuravlev
  • A. S. Poplavnoi
Semiconductor And Dielectric Physics

Abstract

Optical spectra, photoemission spectra, and photoconductivity spectra of alkali metal halides are analyzed using energy band structure calculations and selection rules for direct and indirect transitions. The main feature of the band structure of MeN3 (Me: Na, K, Rb, Cs) as proposed by the authors is the presence of two conductivity bands, one anionic and the other cationic in nature. A weak dispersion of the valence subband indicates that phonons may yield a significant contribution to the observed spectra. All of the optical and photoemission spectra so far reported for the metal azides may be explained on the basis of the proposed band model.

Keywords

Optical Property Conductivity Band Azide Band Structure Halide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Gora, D. S. Downs, P. J. Kemmey, and J. Sharme, Energetic Materials, Vol. 1, Plenum Press, New York (1977), pp. 193–249.Google Scholar
  2. 2.
    A. B. Gordienko, Yu. N. Zhuravlev, and A. S. Poplavnoi, Fiz. Tverd. Tela,34, No. 1, 323–325 (1992).Google Scholar
  3. 3.
    C. S. Choi and E. A. Prince, J. Chem. Phys.64, No. 11, 4510–4516 (1976).Google Scholar
  4. 4.
    T. Gora and R. H. Bartram, J. Chem. Phys.,55, No. 4, 1821–1824.Google Scholar
  5. 5.
    A. R. Rossi and R. H. Bartram, J. Chem. Phys.,70, No. 1, 532–537 (1979).Google Scholar
  6. 6.
    G. B. Bachelet, D. R. Hamman, and M. Schluter, Phys. Rev. B.,26, No. 8, 4199–4228 (1982).Google Scholar
  7. 7.
    A. B. Gordienko, Dep. VINITI 15.01.90, No. 1348-B90, Kemerov Univ., Kemerovo (1990).Google Scholar
  8. 8.
    O. V. Kovalev, Irreducible and Induced Representations and Corepresentations of Fedor Groups, Nauka, Moscow (1986).Google Scholar
  9. 9.
    G. F. Karavaev, Fiz. Tverd. Tela,6, No. 12, 3676–3683 (1964).Google Scholar
  10. 10.
    Kh. Kh. Tul'vinskii and Yu. A. Shuba, Dokl. Akad. Nauk SSSR,172, 1057–1058 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • A. B. Gordienko
  • Yu. N. Zhuravlev
  • A. S. Poplavnoi

There are no affiliations available

Personalised recommendations