Skip to main content
Log in

Elastic constants and elasticity moduli of cubic and wurtzitic boron nitride

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

Elasticity moduli and elastic constants for sphaleritic and wurtzitic boron nitride are calculated and determined by experiment. Numerical values are given for single crystals of these materials and polycrystals of hexanite-R, elbor-R, belbor, kiborite, and other superhard materials. An approach is suggested for combining hot pressing at ultrahigh pressures and a pulsed ultrasonic technique which may be used to determine the elasticity modulus and elastic constants of the majority of refractory compounds which are difficult to determine by other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. N. Frantsevich (ed.), Hexanite and Hexanite-R and Articles Based on Them for Tool Purposes [in Russian], ONTI Inst. Probl. Materialovedeniya, Akad. Nauk UkrSSR, Kiev (1974).

    Google Scholar 

  2. I. N. Frantsevich (ed.), Superhard Materials, Naukova Dumka, Kiev (1980).

    Google Scholar 

  3. A. V. Kurdyumov and A. N. Pilyankevich, Phase Transformations in Carbon and Boron Nitride [in Russian], Naukova Dumka, Kiev (1979).

    Google Scholar 

  4. P. V. Zakharenko, V. M. Volkogon, A. V. Bochko, et al., Production Features of Machining with a Tool Made of Polycrystalline Superhard Materials [in Russian], Naukova Dumka, Kiev (1991).

    Google Scholar 

  5. A. B. Lyashchenko, P. I. Mel'nichuk, and I. N. Frantsevich, “Normal elasticity modulus for some refractory compounds,” Poroshk. Metal., No. 5, 10 (1961).

  6. I. N. Frantsevich, E. A. Zhurakovskii, and A. B. Lyashchenko, ”Elastic constants and features of the electron structure of some classes of refractory compounds prepared as cermets,” Neorgan. Materialy.,3, No. 1, 8–15 (1967).

    Google Scholar 

  7. L. F. Vereshchagin, Synthetic Diamonds and Hydroextrusion [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  8. W. Voigt, Lehbuch der Kristallphysic, Springer, Leipzig (1958).

    Google Scholar 

  9. A. Reuss, “Berechnung der Fliesgrenze von Mischkristallen auf Grund der Plastizatsberechnung fur Einkristalle,” Z. Angew. Math. und Mech.,9, No. 1, 49–58 (1929).

    Google Scholar 

  10. R. Hill, “The elastic behavior of crystalline aggregate,” Proc. Phys. Soc. A., No. 65, 349–354 (1952).

  11. O. Anderson, “Determination and some applications of isotropic elastic constants for polycrystalline systems obtained from data for single crystals,” in: Physical Acoustics, Vol. 3 [Russian translation], Mir, Moscow (1968), pp. 62–121.

    Google Scholar 

  12. M. Born and Khuan Kun', Dynamic Theory of Crystal Lattices [in Russian], Izd. Inostr. Lit., Moscow (1958).

    Google Scholar 

  13. B. A. Glagolevskii and I. B. Moskovenko, Frequency Acoustic Methods for Monitoring in Engineering [in Russian], Mashinostroenie, Leningrad (1977).

    Google Scholar 

  14. O. I. Zaporozherts, “Ultrasonic velocity in SbSn in the critical range,” Fiz. Tverdogo Tela,17, No. 12, 3672–3674 (1975).

    Google Scholar 

  15. O. I. Zaporozhets and L. V. Tikhonov, “Ultrasonic studies of residual stresses in chromium after thermal cycling treatment,” Metallofizika,7, No. 5, 119–120 (1985).

    Google Scholar 

  16. O. I. Zaporozhets, N. A. Krapivka, and L. V. Tikhonov, “Effect of prior thermal cycling treatment on ultrasonic anomalies in chromium in the Néel temperature range,” Fiz. Metal. Metallovedenie,61, No. 2, 379–384 (1986).

    Google Scholar 

  17. H. T. McScimin and W. L. Bond, “Elastic moduli of diamond,” Phys. Rev.,105, No. 3, 116–121 (1957).

    Google Scholar 

  18. L. A. Shul'man, “Debye temperatures for lonsdaleite and wurtzitic modification of boron nitride,” Sverkh. Mat., No. 4, 30–33 (1984).

  19. V. A. Pesin, “Elastic constants for dense modifications of boron nitride,” Sverkh. Mat., No. 6, 18–21 (1980).

    Google Scholar 

  20. T. D. Sokolovskii, “Phonon spectrum of cubic boron nitride,” Izv., Akad. Nauk SSSR, Neorg. Mat.,19, No. 9, 1484 (1983).

    Google Scholar 

  21. S. A. Klimenko and Yu. A. Mukovoz, “Polycrystalline superhard materials based on boron nitride and their application in a cutting tool,” Mir Instrumenta, No. 1, 26–29 (1995).

Download references

Authors

Additional information

Institute of Materials Science, Ukrainian Academy of Sciences, Kiev. Institute of Metal Physics, Ukrainian Academy of Sciences, Kiev. Translated from Poroshkovaya Metallurgiya, Nos. 7/8(380), pp. 92–99, July–August, 1995.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bochko, A.V., Zaporozhets, O.I. Elastic constants and elasticity moduli of cubic and wurtzitic boron nitride. Powder Metall Met Ceram 34, 417–423 (1996). https://doi.org/10.1007/BF00559434

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00559434

Keywords

Navigation