Skip to main content
Log in

The structural aspect of high-pressure superhard phase synthesis

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

Structural aspects are considered for the direct phase transitions in carbon and boron nitride at high pressures from the viewpoint of martensite and diffusion transitions. The mechanism for the transitions of graphite and graphite-type BN into superhardphases is controlled primarily by the crystalline perfection of the initial structures that show martensite transformations to metastable phases (lonsdaleite and BN wurtzite allotrope), while highly defective ones show diffusion transformation to high-pressure stable phases (diamond and cubic boron nitride). The perfection in the initial structure has a very marked effect on the transformation mechanism during shock compression, which is the main technique in the commercial production of superhard phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. N. Frantsevich, G. G. Gnesin, A. V. Kurdyumov, et al., Superhard Materials [in Russian], Naukova Dumka, Kiev (1980).

    Google Scholar 

  2. A. V. Kurdyumov and A. N. Pulyankevich, Phase Translations in Carbon and Boron Nitride in Russian, Naukova Dumka, Kiev (1979).

    Google Scholar 

  3. X. L. Liander, “Diamond Synthesis — the true story,” Ind. Diamond Rev.,40, No. 11, 412–415 (1980).

    Google Scholar 

  4. R. H. Wentorf, “Cubic form of boron nitride,” J. Chem. Phys.,26, No. 4, 956 (1957).

    Google Scholar 

  5. P. S. de Carly and J. L. Jamieson, “Formation of diamond by explosive shock,” Science,133, No. 3467, 1821–1823 (1961).

    Google Scholar 

  6. F. P. Bundy, “Direct conversion of graphite to diamond in static pressure apparatus,” J. Chem. Phys.,38, No. 3, 631–643 (1963).

    Google Scholar 

  7. L. F. Vereshchagin, O. N. Ryabinin, A. A. Simerchan, et al., “Direct conversion of graphite to diamond at high static pressures,” Dokl. AN SSSR,206, No. 1, 78–79 (1972).

    Google Scholar 

  8. F. P. Bundy and R. H. Wentorf, “Direct transformations of hexagonal boron nitride in denser forms,” J. Chem. Phys.,38, No. 5, 1144–1149 (1963).

    Google Scholar 

  9. G. A. Adadurov, Z. G. Aliev, L. O. Atovmyan, et al., “Formation of the wurtzite-type modification of boron nitride on shock compression,” Dokl. AN SSSR,172, No. 5, 1066–1068 (1967).

    Google Scholar 

  10. A. V. Kurdyumov, The Structural Aspect of Phase Transitions in Carbon and Boron Nitride: D. Sc. Thesis [in Russian], Kiev (1977).

  11. A. V. Kurdyumov, G. S. Oleinik, N. F. Ostrovskaya, et al., “Multilayer polytypes in boron nitride,” Dokl. AN SSSR,265, No. 1, 66–68 (1982).

    Google Scholar 

  12. V. F. Britun, A. V. Kurdyumov, and I. A. Petrusha, “Structural features of boron nitride dense phase formation from rhombohedral modification under high pressure,” J. Mat. Sci.,28, 6575–6581 (1993).

    Google Scholar 

  13. A. V. Kurdyumov, N. F. Ostrovskaya, and A. N. Pilyankevich, “The actual structure of dynamic-synthesis diamonds,” Poroshk. Metall., No. 1, 34–40 (1988).

  14. A. V. Beletskii and B. M. Smirnov, “C60 clusters: a new form of carbon,” Usp. Fiz. Nauk,161, No. 7, 173–192 (1991).

    Google Scholar 

  15. L. I. Man, Yu. A. Malinovskii, and S. A. Semiletov, “Crystalline carbon phases,” Kristallografiya,35, No. 4, 1029–1039 (1990).

    Google Scholar 

  16. F. P. Bundy and J. S. Kasper, “Hexagonal diamond — a new form of carbon,” J. Chem. Phys.,46, No. 9, 3437–3446 (1967).

    Google Scholar 

  17. V. M. Danilenko, A. V. Kurdyumov, and A. V. Meike, “Interlayer interaction energies and relative stability of intermediate structures in graphite-type boron nitride,” Kristallografiya,26, No. 2, 337–340 (1981).

    Google Scholar 

  18. V. M. Danilenko, A. V. Kurdyumov, and A. V. Meike, “Layer interaction in graphitic structures,” Dokl. AN Ukr. SSR, Ser. A, No. 3, 42–44 (1985).

  19. A. V. Kurdyumov, N. F. Ostrovskaya, and A. S. Golubev, “Formation mechanism, stability, and actual structure of lonsdaleite,” Sverkh. Mat., No. 4, 17 (1984).

  20. F. R. Corrigan and F. P. Bundy, “Direct transitions among the allotropic forms of boron nitride at high pressures and temperatures,” J. Chem. Phys.,63, No. 9, 3812–3820 (1975).

    Google Scholar 

  21. A. V. Kurdyumov, I. N. Frantsevich, S. S. Dzhamarov, and A. V. Bochko, “Transformation of the wurtzite allotrope of boron nitride into the sphalerite one at high pressures,” Fiz. i Tekh. Vysokikh Davlenii, No. 4, 35–46 (1981).

  22. F. P. Bundy, “Behavior of elemental carbon up to very high temperatures and pressures,” in: High Pressure Science and Technology: Proc. XI AIRAPT Int. Conf., Naukova Dumka, Kiev (1989), pp. 326–332.

    Google Scholar 

  23. A. V. Kurdyumov, V. G. Malogolovets, N. V. Novikov, et al., Polymorphic Modifications of Carbon and Boron Nitride [in Russian], Metallurgiya, Moscow (1994).

    Google Scholar 

  24. V. L. Solozhenko, “The phase diagram for boron nitride,” Dokl. AN SSSR,301, No. 1, 147–149 (1988).

    Google Scholar 

  25. A. V. Kurdyumov and N. F. Ostrovskaya, “Formation mechanisms for superhard carbon and boron nitride phases at high pressures,” Fizika i Tekhnika Vysokikh Davlenii,2, No. 3, 5–18 (1992).

    Google Scholar 

  26. A. V. Kurdyumov, N. F. Ostrovskaya, A. N. Pilyankevich, et al., “An electron-optical study of the products from the shock compression of boron nitride,” Dokl. AN SSSR,215, No. 4, 836–838 (1974).

    Google Scholar 

  27. A. V. Kurdyumov, “Athermic character of the wurtzite transformation in boron nitride,” Fiz. Tverdogo Tela,17, No. 8, 2469–2471 (1975).

    Google Scholar 

  28. A. V. Kurdyumov and N. I. Borimchuk, “Mechanism of the transformation of rhombohedral graphite to diamond,” Dokl. AN SSSR,297, No. 3, 602–604 (1987).

    Google Scholar 

  29. A. V. Kurdyumov and I. N. Frantsevich, “Effects of shock compression on the crystal structure of boron nitride,” Dokl. AN SSSR,231, No. 3, 588–589 (1975).

    Google Scholar 

  30. N. Soma, A. Sawaoka, and S. Saito, “Characterization of wurtzite-type BN synthesized by shock compression,” Mat. Res. Bull.,9, No. 6, 755–762 (1974).

    Google Scholar 

  31. A. V. Kurdyumov, N. F. Ostrovskaya, V. A. Pilipenko, et al., “The structure of boron nitride after high-temperature shock compression,” Dokl. AN SSSR,246, No. 5, 1113–1115 (1979).

    Google Scholar 

  32. N. Sato, T. Ishii, and N. Setaka, “Formation of cubic BN from rhombohedral BN by explosive shock compression,” J. Amer. Ceram. Soc.,65, No. 10, C162 (1982).

    Google Scholar 

  33. A. V. Kurdyumov, I. S. Gladkaya, A. S. Golubev, et al., “Polymorphic transformations in graphite-type boron nitride varying in crystalline perfection at high pressures,” Izv. AN SSSR, Neorgan. Materialy, No. 11, 1835–1838 (1982).

  34. N. I. Borimchuk, V. B. Zelyavskii, A. V. Kurdyumov, et al., “The crystal structure of sphalerite-type boron nitride formed on shock compression,” Dokl. AN SSSR,306, No. 6, 1381–1383 (1989).

    Google Scholar 

  35. N. I. Borimchuk, V. B. Zelyavskii, A. V. Kurdyumov, et al., “The mechanism of direction phase transitions from carbon black and charcoal to diamond on shock compression,” Ibid.,321, No. 1, 95–98 (1991).

    Google Scholar 

  36. A. V. Kurdyumov, V. B. Zelyavskii, N. F. Ostrovskaya, et al., “Features of the actual structure of graphite-type BN and the transformation of it to the wurtzite modification on shock compression,” Poroshk. Metall., Nos. 9/10, 62–66 (1994).

    Google Scholar 

  37. Yu. N. Ryabinin, “Some experiments on dynamic compression of materials,” Zh. Tekh. Fiz.,26, No. 12, 2661–2666 (1956).

    Google Scholar 

  38. S. S. Batsanov, G. E. Blokhina, and A. A. Deribas, “Effects of explosions on materials: structure changes in boron nitride,” Zh. Struktur. Khimii,6, No. 2, 227–231 (1965).

    Google Scholar 

Download references

Authors

Additional information

Institute of Materials Science, Ukrainian Academy of Sciences, Kiev. Translated from Poroshkovaya Metallurgiya, Nos. 7/8(380), pp. 83–92, July–August, 1995.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurdyumov, A.V. The structural aspect of high-pressure superhard phase synthesis. Powder Metall Met Ceram 34, 409–416 (1996). https://doi.org/10.1007/BF00559433

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00559433

Keywords

Navigation