Skip to main content
Log in

Methodology of physical mesomechanics as a basis for model construction in computer-aided design of materials

  • Published:
Russian Physics Journal Aims and scope

Conclusions

The basic theses concerning the methodology of physical mesomechanics considered in this review show that a deformable solid can be represented as a microlevel system of self-consistent deformation structural elements of different scales. The law of scale invariance allows us to describe the behavior of very different materials under different loading conditions based on the element base for the scale levels of a deformable solid. The motion of volume structural elements of the deformation is described by the equations of mechanics (mesolevel and macrolevel), accommodation processes within the SEDs and on their boundaries — dislocation theory (microlevel). We have formulated an algorithm for construction of models for such multilevel systems which can be used in computer-aided design of materials. Examples of the classification of different structural materials have been presented based on the proposed algorithm.

This work was done with the support of the Russian Foundation for Basic Research, Project No. 9301-16498.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Panin, Yu. V. Grinyaev, T. F. Elsukova, and A. G. Ivanchin, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 6, 5–27 (1982).

  2. V. E. Panin, V. A. Likhachev, and Yu. V. Grinyaev, Structural Levels of Deformation in Solids [in Russian], Nauka, Novosibirsk (1985).

    Google Scholar 

  3. V. E. Panin, Yu. V. Grinyaev, V. E. Egorushkin, et al., Izv. Vyssh. Uchebn. Zaved., Fiz., No. 11, 36–51 (1987).

  4. V. E. Panin, Yu. V. Grinyaev, V. I. Danilov, et al., Structural Levels of Plastic Deformation and Fracture [in Russian], Nauka, Novosibirsk (1990).

    Google Scholar 

  5. V. E. Panin (ed.), Physical Mesomechanics and Computer-Aided Design of Materials (in two volumes) [in Russian], Nauka, Novosibirsk (1995).

    Google Scholar 

  6. V. E. Panin (ed.), Design of New Materials and Hardening Technologies [in Russian], Nauka, Novosibirsk (1993).

    Google Scholar 

  7. Structural Levels and Plastic Strain Waves in Solids: Special Theme Issue, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 2 (1990).

  8. Physical Mechanics of a Medium with Structure: special theme issue, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 4 (1992).

  9. V. E. Panin (ed.), Proceedings, International Conference on New Physical and Mechanical Methods of Investigation of Materials Under Loading, University Press, Tomsk (1990).

    Google Scholar 

  10. V. E. Panin, in: Proceedings, Tenth International Conference on the Strength of Materials, Japan Institute of Metals, Sendai (1994), pp. 415–418.

  11. P. V. Makarov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 4, 42–58 (1992).

  12. S. I. Negtreskul, S. G. Psakh'e, S. Yu. Korostelev, and V. E. Panin, Preprint, Tomsk Scientific Center, Siberian Branch of the Russian Academy of Sciences, Tomsk (1989).

    Google Scholar 

  13. S. I. Negreskul, S. G. Psakh'e, and S. Yu. Korostelev, Byulleten' Amerikanskogo Fizicheskogo Obshchestva [Russian translation of the Bulletin of the American Physical Society],34, No. 7, 1702–1704 (1989).

    Google Scholar 

  14. V. E. Panin, E. E. Deryugin, G. I. Vasman, and S. V. Sapozhnikov, Fiz. Met. Metalloved., in press.

  15. B. D. Annin, A. F. Revuzhenko, and E. I. Shemyakin, Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 66–86 (1987).

  16. A. F. Revuzhenko, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 4, 94–104 (1992).

  17. V. A. Likhachev, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 6, 83–102 (1992).

  18. V. I. Vladimirov and A. E. Romanov, Disclinations in Crystals [in Russian], Nauka, Leningrad (1986).

    Google Scholar 

  19. A. N. Vergazov, V. A. Likhachev, and V. V. Rybin, Fiz. Met. Metalloved.,42, No. 1, 146–154 (1976).

    Google Scholar 

  20. A. N. Vergazov, V. A. Likhachev, and V. V. Rybin, Fiz. Met. Metalloved.,42, No. 1, 1241–1246 (1976).

    Google Scholar 

  21. V. I. Trefilov, Yu. V. Mil'man, and S. A. Firstov, Physical Principles of the Strength of Refractory Metals [in Russian], Naukova Dumka, Kiev (1975).

    Google Scholar 

  22. V. V. Rybin, Large Plastic Strains and Fracture of Metals [in Russian], Metallurgiya, Moscow (1986).

    Google Scholar 

  23. A. D. Korotaev, V. F. Sukhovarov, and A. N. Tyumentsev, Dispersion Hardening of Refractory Metals [in Russian], Nauka, Novosibirsk (1989).

    Google Scholar 

  24. V. F. Nesterenko and M. P. Bondar', Fiz. Goren. Vzryva, No. 4, 99–111 (1994).

  25. N. A. Koneva and É. V. Kozlov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 2, 89–106 (1990).

  26. U. Essman, Phys. Stat. Sol.,12, No. 2, 723–747 (1965).

    Google Scholar 

  27. J. Grewen, T. Noda, and D. Sauer, Zs. Metallk.,68, No. 4, 260–265 (1977).

    Google Scholar 

  28. A. Malin, J. Hubert, and M. Hathetley, Zs. Metallk.,72, No. 5, 310–317 (1981).

    Google Scholar 

  29. Y. Hakayama and K. Motii, Acta Met.,35, No. 7(2), 1747–1756 (1987).

    Google Scholar 

  30. E. É. Zasimchuk and L. I. Markashova, Preprint, Inst. Metallofiz., Akad. Nauk. UkrSSR, No. 23, Kiev (1988).

    Google Scholar 

  31. V. E. Panin, S. P. Burkova, and V. S. Pleshanov, Fiz. Met. Metalloved., in press.

  32. V. E. Panin, S. V. Panin, and A. I. Mamaev, Doklady Rossk. Akad. Nauk, in press.

  33. M. M. Myshlyaev, Dissertation in competition for the academic degree of Doctor of the Physical-Mathematical Sciences, Institute of Solid State Physics, Academy of Sciences of the USSR, Chernogolovka (1981).

  34. Yu. I. Meshcheryakov and S. A. Atroshenko, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 4, 105–123 (1992).

  35. G. Nicolis and I. Prigogine, Self-Organization in Non-Equilibrium Systems [Russian translation], Mir, Moscow (1977).

    Google Scholar 

  36. B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, New York (1983).

    Google Scholar 

  37. V. S. Ivanova, Synergetics: Strength and Fracture of Metallic Materials [in Russian], Nauka, Moscow (1992).

    Google Scholar 

  38. A. S. Balankin, A. A. Lyubomudrov, and I. T. Sevryukov, Kinetic Theory of Cumulative Armor Piercing [in Russian], Minoborony SSSR, Moscow (1989).

    Google Scholar 

  39. V. E. Panin, E. E. Deryugin, L. S. Derevyagina, and A. I. Lotkov, Fiz. Tverd. Tela, in press.

  40. R. Z. Valiev, in: Abstracts: Fourteenth International Conference on Physics of Strength and Plasticity of Materials [in Russian], Gos. Tekh. Univ., Samara (1995), p. 126.

  41. V. E. Panin, V. V. Polyakov, G. V. Syrov, and A. V. Fadeev, Izv. Vyssh. Uchebn. Zaved., Fiz. (1996), in press.

  42. M. M. Ristich, V. I. Trefilov, Yu. V. Mil'man et al., Structure and Mechanical Properties of Sintered Materials [in Russian], Serb. ANI, Belgrade (1992).

    Google Scholar 

  43. R. I. Kuznetsova and N. N. Zhukov, Fiz. Met. Metalloved.,47, No. 6, 1281–1287 (1979).

    Google Scholar 

  44. V. E. Panin, E. F. Dudarev, and L. S. Bushnev, Structure and Mechanical Properties of Substitutional Solid Solutions [in Russian], Metallurgiya, Moscow (1971).

    Google Scholar 

  45. V. E. Panin and I. T. Yarmatov, Fiz. Tverd. Tela, in press.

  46. L. E. Popov and É. V. Kozlov, Mechanical Properties of Ordered Alloys [in Russian], Metallurgiya, Moscow (1970).

    Google Scholar 

  47. V. E. Panin, A. I. Slosman, and N. A. Kolesova, Doklady Rossk. Akad. Nauk, in press.

  48. V. F. Sukhovarov, Discontinuous Precipitation of Phases in Alloys [in Russian], Nauka, Novosibirsk (1985).

    Google Scholar 

  49. N. I. Noskova and S. V. Yartsev, Fiz. Met. Metalloved.,78, No. 6, 34–48 (1994).

    Google Scholar 

  50. N. I. Noskova, in: Abstracts, Fourteenth International Conference on the Physics of Strength of Plasticity of Materials [in Russian], Gos. Tekh. Univ., Samara (1995), pp. 156–157.

    Google Scholar 

  51. V. E. Panin, R. D. Strokatov, S. P. Burkova, and B. Akhmetzhanov, in: Advanced Materials and Processes, SHAANXI Science and Technology Press, Xi'an, China (1995), pp. 599–604.

    Google Scholar 

  52. V. E. Panin and T. F. Elsukova, Synergetics and Fatigue Fracture of Metals [in Russian], Nauka, Moscow (1989), pp. 113–138.

    Google Scholar 

  53. T. F. Elsukova and V. E. Panin, Izv. Rossk. Akad. Nauk, Metally, No. 2, 73–89 (1992).

  54. V. E. Panin, in: A Topical Encyclopedia of Current Knowledge Dedicated to A. Griffith, G. Cherepanov (ed.), Krieger Publishing Co., Melbourne, USA (1995), pp. 772–793.

  55. V. E. Panin, Jpn. J. Appl. Phys.,64, No. 9, 888–894 (1995).

    Google Scholar 

  56. T. F. Elsukova, V. E. Panin, and G. V. Angelova, in: Abstracts, Fourteenth International Conference on Physics of Strength and Plasticity of Materials [in Russian], Gos. Tekh. Univ., Samara (1995), pp. 23–24.

    Google Scholar 

Download references

Authors

Additional information

Institute of Physics of Strength and Materials Science, Siberian Branch of the Russian Academy of Sciences. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 6–25, November, 1995.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panin, V.E. Methodology of physical mesomechanics as a basis for model construction in computer-aided design of materials. Russ Phys J 38, 1117–1131 (1995). https://doi.org/10.1007/BF00559394

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00559394

Keywords

Navigation