Advertisement

Journal of Materials Science

, Volume 20, Issue 12, pp 4657–4680 | Cite as

Sliding friction and wear of structural ceramics

Part 1 Room temperature behaviour
  • J. Breznak
  • E. Breval
  • N. H. Macmillan
Papers

Abstract

A study has been made of the unlubricated sliding friction and wear behaviour of various like and unlike combinations of four materials -sinteredα-SiC, graphitized SiC, siliconized SiC and a Y2O3-stabilized ZrO2 — in air at room temperature under dynamic conditions approximating the motion of a piston in the cylinder of an idling automotive engine. The steady state friction coefficientΜf is largely independent of the initial surface finish, but is in all cases unacceptably high (0.25 ⩽Μf ⩽ 0.50) for engine applications. When the running-in process involves smoothing of the wear surfaces, the coefficient of friction decreases asymptotically towards its steady state value; and when running-in involves roughening, this coefficient usually increases asymptotically as the wear surfaces develop their steady state topographies. Friction couples containing siliconized SiC were the only exceptions to this pattern of behaviour. In every case the high steady state friction is accompanied by considerable wear. The results suggest that ceramic components will not be used unlubricated in reciprocating situations.

Keywords

Polymer Steady State Dynamic Condition Wear Surface Surface Finish 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. L. Robinson,Science 187 (1975) 1185.Google Scholar
  2. 2.
    Idem, ibid. 188 (1975) 40.Google Scholar
  3. 3.
    R. N. Katz,ibid. 208 (1980) 841.Google Scholar
  4. 4.
    A. F. McLean,Amer. Ceram. Soc. Bull. 61 (1982) 861.Google Scholar
  5. 5.
    D. F. Godfrey, “The Use of Ceramics for Engines”, p. 27 in Science of Ceramics 12, edited by P. Vincenzini, (Ceramurgica s.r.l., Faenza, Italy, 1984).Google Scholar
  6. 6.
    F. P. Bowden andD. Tabor, “The Friction and Lubrication of Solids”, Vol. I (1954) and Vol. II (1964) (Oxford University Press, Oxford, England).Google Scholar
  7. 7.
    D. Tabor,J. Lubrication Technol. 130 (1981) 169.Google Scholar
  8. 8.
    D. Tabor, “Future Directions of Research in Adhesion and Friction”, in “Tribology in the '80s”, Vol. 1 (NASA CP-2300, NASA, Washington, DC, 1984) p. 119.Google Scholar
  9. 9.
    “Surface Effects in Crystal Plasticity” edited by R. M. Latanision and J. T. Fourie, (Noordhoff, Leyden, Holland, 1977).Google Scholar
  10. 10.
    “Atomistics of Fracture”, edited by R. M. Latanision and J. R. Pickens (Plenum, New York, 1983).Google Scholar
  11. 11.
    J. F. O'hanlon, “A User's Guide to Vacuum Technology”, (Wiley, New York, 1980) pp. 8et seq.Google Scholar
  12. 12.
    S. Robb,Amer. Ceram. Soc. Bull. 62 (1983) 755.Google Scholar
  13. 13.
    L. B. Sibley, private communication (1984).Google Scholar
  14. 14.
    A. F. Wells, “Structural Inorganic Chemistry”, 3rd Edn., (Oxford University Press, Oxford, England, 1962) p. 768.Google Scholar
  15. 15.
    H. G. Scott,J. Mater. Sci. 10 (1975) 1527.Google Scholar
  16. 16.
    A. G. Evans, “Fracture Toughness: The Role of Indentation Techniques”, in “Fracture Mechanics Applied to Brittle Materials”, (ASTM STP 678, ASTM, Philadelphia, 1979) p. 112.Google Scholar
  17. 17.
    N. H. Macmillan,Amer. Ceram. Soc. Bull. 59 (1980) 697.Google Scholar
  18. 18.
    E. Rabinowicz, “Friction and Wear of Materials”, (Wiley, New York, 1965).Google Scholar
  19. 19.
    K. Miyoshi andD. H. Buckley, “Considerations in Friction and Wear”, in “Tribology in the '80s”, Vol. 1, (NASA CP-2300, NASA, Washington, DC, 1984) p. 291.Google Scholar
  20. 20.
    O. O. Adewoye andT. F. Page,Wear 70 (1981) 37.Google Scholar
  21. 21.
    D. W. Richerson, L. J. Lindberg, W. D. Carruthers andJ. Dahn,Ceram. Eng. Sci. Proc. 2 (1981) 578.Google Scholar
  22. 22.
    J. R. Smyth andD. W. Richerson,ibid. 4 (1983) 663.Google Scholar
  23. 23.
    M. A. Moore andF. S. King,Wear 60 (1980) 123.Google Scholar
  24. 24.
    M. B. Peterson andS. F. Murray,Metals Eng. Quart. 7(2) (1967) 22.Google Scholar
  25. 25.
    E. Rabinowicz andM. Imai, “Friction and Wear at Elevated Temperature”, Technical Report WADC-TR-59-603 Pt III to Wright Field, The Massachusetts Institute of Technology, Cambridge, Massachusetts, July, 1962.Google Scholar
  26. 26.
    J. D. Byerlee J. Appl. Phys. 38 (1967) 2928.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1985

Authors and Affiliations

  • J. Breznak
    • 1
  • E. Breval
    • 1
  • N. H. Macmillan
    • 1
  1. 1.Materials Research LaboratoryPennsylvania State UniversityPennsylvaniaUSA

Personalised recommendations