Journal of Materials Science

, Volume 20, Issue 12, pp 4624–4646 | Cite as

An investigation of ion implantation-induced near-surface stresses and their effects in sapphire and glass

  • P. J. Burnett
  • T. F. Page


Using both cantilever bending and indentation fracture techniques, the generation of near-surface compressive stresses by ion-implantation into sapphire and glass has been monitored and characterized. In all cases, the surface stresses initially increase with ion dose until a critical dose (dependent on material and ion species/ energy) is reached. Beyond this dose, stress relief has been observed and, for sapphire implanted with both Y+ and Ti+, this has been attributed to the formation and growth of an amorphous layer as monitored by hardness testing. The stress relief has been simply modelled and values estimated for the mechanical strength of the amorphous layer produced. For sapphire, the integrated stress produced over the near-surface volume was found to increase linearly with dose; values of the integrated stress produced by the two different species were similar when considered in terms of energy deposition. Estimates of the contribution to the integrated stress of both the implantation-induced damage and the implanted species profile suggest that the implanted profile makes a minor but significant (20%) contribution. Broadly similar behaviour was observed for soda-lime-silica glass specimens implanted with both C+ and N+. While the origins of the compressive stress produced are probably similar to those in crystalline materials (i.e. defect production and ion-stuffing), no microstructural explanations for both the observed hardening with increasing dose and stress relief have been forthcoming. However, high-dose implantation of N+ into glass leads to blistering and concomitant softening.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. J. Burnett andT. F. Page,J. Mater. Sci. 19 (1984) 845.Google Scholar
  2. 2.
    Idem, “Plastic Deformation of Ceramic Materials”, edited by R. C. Bradt and R. E. Tressler (Plenum Press, New York, 1984) p. 669.Google Scholar
  3. 3.
    Idem, Proc. Mater. Res. Soc. 27 (1984) 401.Google Scholar
  4. 4.
    J. M. Williams, C. J. McHargue andB. R. Appleton,Nucl. Inst. Meth. 209/210 (1983) 317.Google Scholar
  5. 5.
    J. K. Cochran, K. O. Legg andH. F. Sulnick-Legg,Proc. Mater. Res. Soc. 24 (1984) 173.Google Scholar
  6. 6.
    G. B. Krefft andE. P. Eernisse,J. Appl. Phys. 49 (1978) 2725.Google Scholar
  7. 7.
    N. E. W. Hartley,J. Vac. Sci. Technol. 12 (1975) 485.Google Scholar
  8. 8.
    E. P. Eernisse,J. Appl. Phys. 45 (1974) 167.Google Scholar
  9. 9.
    B. V. King, J. C. Kelly andR. L. Dalglish,Nucl. Inst. Meth. 209/210 (1983) 1135.Google Scholar
  10. 10.
    P. J. Burnett andT. F. Page,J. Mater. Sci. 19 (1984) 3524.Google Scholar
  11. 11.
    S. G. Roberts andT. F. Page, “Ion Implantation into Metals”, edited by V. Ashworth, W. A. Grant and R. P. M. Proctor (Pergamon, Oxford, 1982) p. 135.Google Scholar
  12. 12.
    B. R. Lawn andE. R. Fuller,J. Mater. Sci. 19 (1984)4061.Google Scholar
  13. 13.
    T. Jensen, B. R. Lawn, R. L. Dalglish andJ. C. Kelly,Radiat. Eff. 28 (1976) 245.Google Scholar
  14. 14.
    G. Carter andW. A. Grant, “Ion Implantation of Semiconductors”, (Edward Arnold, London, 1976) p. 42.Google Scholar
  15. 15.
    J. Lindward, M. Scharff andH. E. SchiØtt,Matt. Fys. Med. Kgl. Dansk. Vid. Selsk. 33 (1963) No. 14.Google Scholar
  16. 16.
    J. H. Crawford,J. Nucl. Mater. 108/109 (1982) 644.Google Scholar
  17. 17.
    K. B. Winterbon, P. Sigmund andJ. B. Sanders,Matt. Fys. Med. Kgl. Dansk. Vid. Selsk. 37 (1970) No. 14.Google Scholar
  18. 18.
    I. Manning andG. P. Mueller,Computer Phys. Commun. 7 (1974) 85.Google Scholar
  19. 19.
    C. Wang, Y. Tao andS. Wang,J. Non-Cryst. Solids 52 (1982) 589.Google Scholar
  20. 20.
    P. Ma'zzoldi,Nucl. Inst. Meth. 209/210 (1983) 1089.Google Scholar
  21. 21.
    G. Deconninck, “Introduction to Radioanalytical Physics” (Elsevier, Amsterdam, 1978).Google Scholar
  22. 22.
    M. D. Matthews, Harwell Report AERE-R-10848 (AERE, Harwell, Oxon, 1983).Google Scholar
  23. 23.
    B. R. Lawn andT. R. Wilshaw,J. Mater. Sci. 10 (1975) 1049.Google Scholar
  24. 24.
    H. Naramoto, C. W. White, J. M. Williams, C. J. McHargue, O. W. Holland, M. M. Abraham andB. R. Appleton,J. Appl. Phys. 54 (1983) 683.Google Scholar
  25. 25.
    C. J. McHargue, H. Naramoto, B. R. Appleton, C. W. White andJ. M. Williams,Proc. Mater. Res. Soc. 7 (1982) 147.Google Scholar
  26. 26.
    T. E. Mitchell andA. H. Heuer,Mater. Sci. Eng. 28 (1977)81.Google Scholar
  27. 27.
    D. M. Marsh,Proc. R. Soc. A279 (1964) 420.Google Scholar
  28. 28.
    K. W. Peter,J. Non-Cryst. Solids 5 (1970) 103.Google Scholar
  29. 29.
    K. Witmaak andG. Staudenmaier,J. Nucl. Mater. 93/94 (1980) 581.Google Scholar
  30. 30.
    M. L. Kronberg,J. Amer. Ceram. Soc. 45 (1962) 274.Google Scholar
  31. 31.
    B. R. Lawn, A. G. Evans andD. B. Marshall,ibid. 63 (1980) 574.Google Scholar
  32. 32.
    G. R. Anstis, P. Chantikul, B. R. Lawn andD. B. Marshall,ibid. 64 (1981) 533.Google Scholar
  33. 33.
    P. M. Sargent andT. F. Page,Proc. Br. Ceram. Soc. 26 (1978) 209.Google Scholar
  34. 34.
    J. T. Czernuszka andT. F. Page,ibid. 34 (1984) 145.Google Scholar
  35. 35.
    R. C. Weast, “Handbook of Chemistry and Physics” (CRC Press, Cleveland, Ohio, 1976).Google Scholar
  36. 36.
    A. J. Bourdillon, S. J. Bull, P. J. Burnett andT. F. Page,J. Mater. Sci. in press.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1985

Authors and Affiliations

  • P. J. Burnett
    • 1
  • T. F. Page
    • 1
  1. 1.Department of Metallurgy and Materials ScienceUniversity of CambridgeCambridgeUK
  2. 2.Department of Metallurgy and Science of MaterialsUniversity of OxfordOxfordUK

Personalised recommendations