Advertisement

Journal of Materials Science

, Volume 20, Issue 12, pp 4377–4386 | Cite as

The mechanical behaviour of PVC short-fibre composites

  • J. Yuan
  • A. Hiltner
  • E. Baer
  • D. Rahrig
Papers

Abstract

Competitive deformation processes between interfacial “debonding” and matrix cracking at the fibre ends is shown for the short-fibre reinforced composites of polyvinyl chloride (PVC). The increase of interfacial shear strength by chemical coupling prevents early failure at the interface, thus increasing the tensile failure stress of short-fibre composites. The previously proposed general yield criterion for PVC and its short-fibre composites is also examined. No significant effect due to improved fibre-matrix adhesion on the upper shear yielding of short-fibre composites is observed. The matrix flow in the post-yield region is less restricted when debonding occurs.

Keywords

Polymer Shear Strength Mechanical Behaviour Deformation Process Polyvinyl Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. L. Cox,Br. J. Appl. Phys. 3 (1952) 72.Google Scholar
  2. 2.
    B. W. Rosen, in “Fiber Composite Materials” (American Society for Metals, Metals Park, Ohio, 1965) p. 37.Google Scholar
  3. 3.
    A. Kelly, “Strong Solids” (Clarendon, Oxford, 1966) p. 121.Google Scholar
  4. 4.
    W. R. Tyson andG. J. Davies,Br. J. Appl. Phys. 16 (1965) 199.Google Scholar
  5. 5.
    M. R. Piggott,Polym. Composites 3 (1982) 179.Google Scholar
  6. 6.
    N. Sato, T. Kurauchi, S. Sato andO. Kamigaito,J. Mater. Sci. Lett. 2 (1983) 188.Google Scholar
  7. 7.
    J. Yuan, A. Hiltner, E. Baer andD. Rahrig,Polym. Eng. Sci. 24 (1984) 844.Google Scholar
  8. 8.
    M. G. Schinker, L. Konczol andW. Doll,J. Mater. Sci. Lett.,1 (1982) 475.Google Scholar
  9. 9.
    J. Juan, A. Hiltner andE. Baer,J. Mater. Sci. 18 (1983) 3063.Google Scholar
  10. 10.
    A. W. Christiansen, E. Baer andS. V. Radcliffe,Phil. Mag. 24 (1971) 451.Google Scholar
  11. 11.
    S. S. Sternstein andL. Ongchin,ACS Polym. Prepr. 10 (1969) 1117.Google Scholar
  12. 12.
    S. S. Sternstein andF. A. Myers,J. Macromol. Sci. Phys. B8 (1973) 539.Google Scholar
  13. 13.
    A. Nadai,J. Appl. Mech. 1 (1933) 111.Google Scholar
  14. 14.
    J. Yuan, A. Hiltner, E. Baer andD. Rahrig, Proceedings of Society of Plastics Engineers Annual Technical Conference, New Orleans, 1984 (SPE Inc., Brookfield Center, Connecticut) p. 672.Google Scholar
  15. 15.
    P. B. Bowden andJ. A. Jakes,J. Mater. Sci. 7 (1972) 52.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1985

Authors and Affiliations

  • J. Yuan
    • 1
  • A. Hiltner
    • 1
  • E. Baer
    • 1
  • D. Rahrig
    • 2
  1. 1.Department of Macromolecular Science, Case Institute of TechnologyCase Western Reserve UniversityClevelandUSA
  2. 2.BF Goodrich Research CenterBrecksvilleUSA

Personalised recommendations