Advertisement

Russian Physics Journal

, Volume 36, Issue 1, pp 10–17 | Cite as

The hidden mass of the universe

  • O. B. Firsov
Elementary Particle Physics And Field Theory
  • 15 Downloads

Abstract

It is generally accepted that the hidden mass of the Universe consists of massive neutrinos or other hypothetical particles (axions, photinos, etc. We assert that there is no basis for such hypotheses. Even if the neutrino possesses a mass, it would be too small, and despite the great efforts to observe the other particles, the results have been negative. If the mass distribution law f(M) ∼ M−2 established for meteors meteorites and asteroids in the range between 10−12 and 1020 g is extended to the Universe as a whole, one obtains values for the density of the luminous matter, transparency of the galaxies and of the Universe which agree with those observed. It is assumed that the primordial deuterium was burnt up during continuous star formation, and the deuterium observed at present is of a secondary origin. It is shown that very probably the metallicity of stars of the solar type may in reality be tens of times greater than that observed in the photosphere which reflects only the metallicity of a convection layer with a thickness of less than 0.2 of the radius. The difficulties that arise if it is assumed that the dark matter consists of hypothetical noninteracting particles are mentioned: at t ≅ 1013 sec there cannot be any perturbations of the density of particles with mc2<20 eV at a level of 10−4 (absence of fluctuations of the microwave background radiation); particles with mc2>103 eV should decay during a period of 108–109 years and thus distort significantly the t(T) dependence; particles with mc2>105 eV strongly reduce the thermonuclear synthesis time and consequently (D/H)>10−3 and (4HeH)<0.2.

Keywords

Convection Dark Matter Deuterium Mass Distribution Massive Neutrino 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    F. Zwicky, Helv. Phys. Acta,6, 110 (1933).Google Scholar
  2. 2.
    J. H. Oort, Interstellar Matter in Galaxies, Li Waitjev (ed.), Benjamin, New York (1962).Google Scholar
  3. 3.
    J. Einasto and H. Kaasik, Nature,250, 309 (1974).Google Scholar
  4. 4.
    J. P. Ostriker, P. J. E. Paebles, and A. Yahil, Astrophys. J. Lett.,193, L1 (1974).Google Scholar
  5. 5.
    W. C. Saslow, Gravitational Physics of Stellar and Galactic Systems, Cambridge University Press (USA) (1987).Google Scholar
  6. 6.
    I. D. Karachentsev, Astrofizika,16, 217 (1980).Google Scholar
  7. 7.
    A. D. Dolgov and Ya. B. Zel'dovich, Usp. Fiz. Nauk,16, 559 (1980).Google Scholar
  8. 8.
    I. D. Karachentsev and A. L. Kopylov, Mon. Not. R. Astron. Soc.,192, 109 (1980).Google Scholar
  9. 9.
    G. A. Tamman and A. Yahil, Astrophys. J.,234, 775 (1979).Google Scholar
  10. 10.
    V. A. Lyubimov, E. G. Novikov, V. V. Nozik, et al., Yad. Fiz.,32, 361 (1980); Phys. Lett. B,94, 266 (1980).Google Scholar
  11. 11.
    S. F. Shandarin, A. G. Doroshkevich, and Ya. B. Zel'dovich, Usp. Fiz. Nauk,139, 63 (1983).Google Scholar
  12. 12.
    14th International Symposium on Lepton and Photon Interactions, Stanford, August 6–12, (1989).Google Scholar
  13. 13.
    Yu. U. Baier and Vol'fenshtein, Usp. Fiz. Nauk,160, No. 10, 155 (1991); S. P. Mikheyev and A. Yu. Smirnov, Nuovo Cimento C,9, 17 (1986).Google Scholar
  14. 14.
    B. Yu. Levin and A. N. Simonenko, Meteoritika, 1972; Priroda, No. 4, 7 (1973).Google Scholar
  15. 15.
    E. E. Solpeter, Astrophys. J.,125, 161 (1955).Google Scholar
  16. 16.
    A. G. Masevich and F. V. Tutikov, Stellar Evolution. Theory and Observations [in Russian], Nauka, Moscow (1988).Google Scholar
  17. 17.
    O. B. Trubnikova, Yu. S. Kusner, and B. A. Trubnikov, Nauka i Zhizn', No. 3 (1992).Google Scholar
  18. 18.
    B. A. Trubnikov, Dokl. Akad. Nauk SSSR,196, No. 6, 1316 (1971).Google Scholar
  19. 19.
    D. Ya. Martynov, A Course of General Astrophysics [in Russian], Nauka, Moscow (1988).Google Scholar
  20. 20.
    B. S. Ishkhanov and M. I. Kapitonov, Nuclear Physics. The Origin of the Elements [in Russian], Izd. MGU, Moscow, 16 (1989).Google Scholar
  21. 21.
    B. V. Vainer and Yu. A. Shchekinov, Usp. Fiz. Nauk,146, No. 1, 143 (1985).Google Scholar
  22. 22.
    K. N. Mukhin, Experimental Nuclear Physics [Russian translation], Mir, Moscow (1987).Google Scholar
  23. 23.
    V. L. Ginzburg, Usp. Fiz. Nauk,155, No. 2, 185 (1988).Google Scholar
  24. 24.
    B. A. Trubnikov, Usp. Fiz. Nauk,160, No. 12, 167 (1990).Google Scholar
  25. 25.
    L. D. Landau and E. M. Lifshitz, The Theory of the Field [in Russian], Nauka, Moscow (1988); The Classical Theory of Fields, Pergamon Press, Oxford, New York (1971).Google Scholar
  26. 26.
    Ya. B. Zel'dovich, V. G. Kurt, and R. A. Sunyaev, Zh, Eksp. Teor. Fiz.,55, 279 (1968).Google Scholar
  27. 27.
    V. S. Imshenik and Yu. I. Morozov, Astron. Zh.,66, 1198 (1989).Google Scholar
  28. 28.
    J. Silk, The Big Bang [Russian translation], Mir, Moscow (1982), pp. 342–344; The Big Bang: The Creation and Evolution of the Universe, W. H. Foreman, New York (1989).Google Scholar
  29. 29.
    A. Penzias, Usp. Fiz. Nauk,129, 581 (1979).Google Scholar
  30. 30.
    F. A. Ahoronian and R. A. Sunyaev, Preprint Space Res. Inst., No. 762, Moscow (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • O. B. Firsov

There are no affiliations available

Personalised recommendations