Russian Physics Journal

, Volume 35, Issue 7, pp 601–605 | Cite as

Laws of the deformation and failure of molybdenum in creep with grain-boundary activation by diffusional nickel fluxes

  • G. P. Grabovetskaya
  • I. K. Zverev
  • Yu. R. Kolobov
Solid State Physics


The diffusion of nickel from the surface of polycrystalline molybdenum influences the crack formation and plastic deformation in creep. Investigation shows that diffusional fluxes of nickel from the surface reduce the critical deformation at which the first cracks appear in molybdenum. The contribution of grain-boundary slip to the deformation of molybdenum in creep is considerably increased in the presence of nickel diffusion from the surface as a result of easier crack formation and grain-boundary activation.


Nickel Plastic Deformation Molybdenum Crack Formation Diffusional Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Yu. R. Kolobov, V. B. Marvin, I. V. Ratochka, and A. D. Korotaev, Dokl. Akad. Nauk SSSR,283, No. 3, 605–609 (1985).Google Scholar
  2. 2.
    Yu. R. Kolobov and V. B. Marvin, Fiz. Met. Metalloved.,67, No. 6, 1204–1208 (1989).Google Scholar
  3. 3.
    Yu. R. Kolobov and V. B. Marvin, Metallofizika,11, No. 4, 3–7 (1989).Google Scholar
  4. 4.
    Yu. R. Kolobov and I. V. Ratochka, Submitted to Izv. Vyssh. Uchebn. Zaved., Fiz. (1989); Paper 881 Deposited at VINITI [in Russian], Moscow (1989).Google Scholar
  5. 5.
    R. I. Kuznetsova, Role of Grain-Boundary Porosity in Superplasticity [in Russian], Khar'kov (1982).Google Scholar
  6. 6.
    V. I. Betekhtin, Kinetic Laws of the Failure of Crystalline Bodies [in Russian], Ioffe Physicotechnical Institute, Leningrad (1984).Google Scholar
  7. 7.
    V. M. Rozenberg, Fundamentals of the Heat Strength of Metallic Materials [in Russian], Metallurgiya, Moscow (1983).Google Scholar
  8. 8.
    J. P. Poirier, Creep of Crystals, Cambridge University Press, New York (1985).Google Scholar
  9. 9.
    V. E. Panin, E. F. Dudarev, et al., in: Structure and Properties of Heat-Resistant Materials [in Russian], Nauka, Moscow (1973), pp. 103–111.Google Scholar
  10. 10.
    K. M. Vansovskaya, Galvanic Coatings [in Russian], Mashinostroenie, Leningrad (1984).Google Scholar
  11. 11.
    N. I. Novikov and V. K. Portnoi, Superplasticity of Alloys with Ultrasmall Grains [in Russian], Metallurgiya, Moscow (1981).Google Scholar
  12. 12.
    O. A. Kaibyshev, Superplasticity of Industrial Alloys [in Russian], Metallurgiya, Moscow (1984).Google Scholar
  13. 13.
    S. Z. Bokshtein, S. T. Kishkin, Yu. M. Mishin, and I. M. Razumovskii, Dokl. Akad. Nauk SSSR,280, No. 5, 1125–1128 (1985).Google Scholar
  14. 14.
    S. Z. Bokshtein and I. V. Kopetskii, Structure and Properties of Internal Surfaces in Metals [in Russian], Nauka, Moscow (1988).Google Scholar
  15. 15.
    V. Zait, Diffusion in Metals [in Russian], Metallurgiya, Moscow (1958).Google Scholar
  16. 16.
    G. P. Grabovetskaya, Yu. R. Kolobov, and V. B. Marvin, Fiz. Met. Metallov., No. 9, 193–196 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • G. P. Grabovetskaya
  • I. K. Zverev
  • Yu. R. Kolobov

There are no affiliations available

Personalised recommendations