Russian Physics Journal

, Volume 35, Issue 6, pp 548–551 | Cite as

Calculation of the one-loop effective potential in induced two-dimensional quantum gravitation

  • I. L. Shapiro
Elementary Particle Physics And Field Theory


The one-loop effective potential is calculated in induced two-dimensional quantum gravitation. There are no quantum corrections to the classical potential in the Jackiw-Teitelboim exactly solvable model. This fact is in agreement with the results of a nonperturbation analysis.


Solvable Model Effective Potential Quantum Correction Classical Potential Nonperturbation Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    S. D. Odintsov and I. L. Shapiro, Phys. Lett.,B263, 183 (1991); Europhys. Lett.,15, 575 (1991).Google Scholar
  2. 2.
    S. D. Odintsov and I. L. Shapiro, Preprint Univ. Auton. Madrid. FTUAM 33–91, 33–91, pp. 1–34.Google Scholar
  3. 3.
    A. M. Polyakov, Mod. Phys. Lett.,A2, 893 (1987).Google Scholar
  4. 4.
    V. G. Kniznik, A. M. Polyakov, and A. B. Zamolodchikov, Mod. Phys. Lett.,A3, 819 (1988).Google Scholar
  5. 5.
    J. Distler and H. Kawai, Nucl. Phys.,B321, 509 (1989).Google Scholar
  6. 6.
    A. H. Chamseddine, Phys. Lett.,B256, 379 (1991).Google Scholar
  7. 7.
    S. Ichinose, Phys. Lett.,B251, 49 (1990).Google Scholar
  8. 8.
    R. Jackiw, in: Quantum Theory of Gravity, S. Christensen and A. Hilger (eds.) (1984); Teitelboim, ibid.Google Scholar
  9. 9.
    N. Seiberg, Prog. Theor. Phys. Suppl.,102, 319 (1990).Google Scholar
  10. 10.
    A. Rebhan, U. Kraemmer, and R. Knienider, Phys. Rev.,D39, 3625 (1989).Google Scholar
  11. 11.
    H. Kawai and M. Ninomiya, Nucl. Phys.,B336, 115 (1990).Google Scholar
  12. 12.
    I. Jack and D. R. T. Jones, Preprint CERN-TH-5945 (1990), 1–17.Google Scholar
  13. 13.
    T. Banks and M. O. O'Loughlin, Preprint RU-90-64, Piscutaway, No. 3 (1990).Google Scholar
  14. 14.
    E. Abdalla, M. C. B. Abdalla, J. Gamboa, and A. Zadra, Preprint CERN-TH 6119/91, (1990), 1–17.Google Scholar
  15. 15.
    G. A. Vilkovisky, Nucl. Phys.,B234, 125 (1984).Google Scholar
  16. 16.
    B. S. De Witt, in: Quantum Field Theory and Quantum Statistics, I. A. Batalin, G. Isham, G. A. Vilkovisky, A. Hilger (eds.), Bristol (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • I. L. Shapiro

There are no affiliations available

Personalised recommendations