Advertisement

Russian Physics Journal

, Volume 36, Issue 9, pp 874–878 | Cite as

Degradation processes in thin-film MIM cathodes: Calculation of the distribution of the temperature field in and near a formed channel

  • V. M. Gaponenko
  • E. V. Nefedtsev
  • A. V. Chernyavskii
Physics Of Semiconductors And Dielectrics
  • 19 Downloads

Abstract

The distribution of the temperature field in a formed channel is calculated with allowance for the real structure of the channel. The temperature is shown to decrease by a factor of two to three with the distance from the central regions toward the edges of the formed channel. The steady-state existence of formed channels in MIM systems with various metals of the upper electrode has been demonstrated to be possible. The calculated results are analyzed and compared with experimental data on the effect of various factors on the rate of degradation processes in MIM cathodes; on the basis of the comparison we conclude that the distribution of the temperature and electric field in the unformed insulator near the formed channel has the decisive effect on the rate of degradation of emission centers.

Keywords

Experimental Data Central Region Temperature Field Calculated Result Degradation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. L. Gallanskii, A. A. Miller, Yu. P. Sharkeev, and N. Yu. Ivanova, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 7, 147 (1977).Google Scholar
  2. 2.
    G. A. Vorob'ev, R. B. Lubsanov, and P. E. Troyan, Radiotekh. Élektron.,30, No. 7, 1380 (1985).Google Scholar
  3. 3.
    V. M. Gaponenko, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 1, 49 (1992).Google Scholar
  4. 4.
    V. A. Budrovitsyn, L. L. Gallanskii, V. D. Zamozhskii, et al., Izv. Vyssh. Uchebn. Zaved., Fiz., No. 12, 75 (1975).Google Scholar
  5. 5.
    Yu. A. Burachevskii, Zh. Tekh. Fiz.,51, No. 6, 1311 (1981).Google Scholar
  6. 6.
    V. M. Gaponenko and V. V. Motoshkin, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 6, 95 (1992).Google Scholar
  7. 7.
    G. A. Vorob'ev and V. M. Gaponenko, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 1, 58 (1992).Google Scholar
  8. 8.
    V. M. Gaponenko and A. V. Chernyavskii, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 11, 95 (1992).Google Scholar
  9. 9.
    Ch.-F. Chen, Ch. Y. Yu, and Cn.-W. Chen, IEEE Trans. Electron. Devices,ED-34, No. 7, 1540 (1987).Google Scholar
  10. 10.
    V. M. Gaponenko, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 5, 115 (1992).Google Scholar
  11. 11.
    G. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill, New York (1961).Google Scholar
  12. 12.
    I. K. Kikoin (ed.), Tales of Physical Quantities. A Handbook [in Russian], Atomizdat, Moscow (1976).Google Scholar
  13. 13.
    G. V. Samsonov, A. L. Borisova, T. G. Zhidkova, et al., in: Physicochemical Properties of Oxides. A Handbook [in Russian], G. V. Samsonov (ed.), Metallurgiya, Moscow (1978).Google Scholar
  14. 14.
    H. Biedermann, Vacuum,26, No. 3, 513 (1976).Google Scholar
  15. 15.
    V. M. Gaponenko and R. B. Lubsanov, Abstracts of Papers Read at 5th All-Union Symposium on Nonincandescent Cathodes [in Russian], Tomsk (1985).Google Scholar
  16. 16.
    V. M. Gaponenko, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 10, 44 (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • V. M. Gaponenko
  • E. V. Nefedtsev
  • A. V. Chernyavskii

There are no affiliations available

Personalised recommendations