Skip to main content
Log in

The science and engineering of fracture

  • Published:
Materials Science Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. G. I. Barenblatt, “The mathematical theory of equilibrium cracks in brittle fracture,” Adv. Appl. Mech.7 55 (1962).

    Google Scholar 

  2. D. Bhattacharjee and Knott, J. F., “Micromechanisms of fracture in steels tested under mixed-mode loading at room temperature,” Proc. Int. Conf. on Mixed-Mode Fract. and Fatigue, 15–17, July, 1993, Vienna, 1993.

  3. B. A. Bilby, A. H. Cottrell, and K. H. Swinden, “The spread of plastic yield from a notch,” Proc. R. Soc.,A272 304–314 (1963).

    Google Scholar 

  4. P. Bowen, S. G. Druce, and J. F. Knott, “Micromechanical modelling of fracture toughness,” Acta Met.,35 1735–1746 (1987).

    Google Scholar 

  5. S. D. Carothers, “Plane strain — the direct determination of stress,” Proc. R. Soc.,A97 110–123 (1920).

    Google Scholar 

  6. A.H. Cottrell, “Fracture (the Bakerian lecture),” Proc. R. Soc.,A276 1–18 (1963).

    Google Scholar 

  7. A.H. Cottrell, “Theory of brittle fracture in steel and similar metals,” Trans. Am. Inst. Min. Met. Petrol Eng.,212 192–202 (1958).

    Google Scholar 

  8. D. A. Curry and J. F. Knott, “The effect of microstructure on the cleavage fracture toughness of quenched and tempered steels,” Met. Sci.,13 341–345 (1979).

    Google Scholar 

  9. A. A. Griffith, “The phenomena of rupture and flow in solids,” Phil. Trans. R. Soc.,A221 163–198 (1920).

    Google Scholar 

  10. A. A. Griffith, “The theory of rupture,” Proc. 1st Intl. Conf. on Appl. Mech., Delft, 1924, p. 55.

  11. C. E. Inglis, “Stresses in a plate due to the presence of cracks and sharp corners,” Trans. Inst. Nav. Arch.,IV No. 1, 219 (1913).

    Google Scholar 

  12. G. R. Irwin, “Analysis of stresses and strains near the end of a crack traversing a plate,” J. Appl. Mech.,24 361–364 (1957).

    Google Scholar 

  13. T. Ishikawa, “Fracture behavior in steel and weld metals for low temperature service,” PhD Thesis, Univ. of Cambridge, 1989.

  14. L. M. Kachanov, Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, No. 8, 26 (1958).

  15. A. Kelly, W. R. Tyson, A. H. Cotrell, “Ductile and brittle crystals,” Phil. Mag.,15 567–586 (1967).

    Google Scholar 

  16. J. F. Knott, “Mechanics of fracture,” in: Atomistics of Fracture, Plenum Publishing Corporation (1983), pp. 209–240.

  17. J. F. Knott, “Effects of microstructure and stress state on ductile fracture in metallic alloys,” Proc. 7th Int. Conf. on Fracture, Advances in Fracture Research, Pergamon Press,1, 125–138 (1989).

  18. J. F. Knott, “Micromechanisms of fracture — the role of microstructure,” Proc. Ninth Europ. Conf. on Fracture., EMAS, Varna, 1375–1400 (1992).

  19. A. E. H. Love, “Mathematical theory of elasticity, Cambridge University Press, 1892.

  20. T. M. Maccagno and J. F. Knott, “The low temperature brittle fracture behavior of steel in mixed modes I and II,” Eng. Fract. Mech.,38 111–128 (1991).

    Google Scholar 

  21. D. McLean, Mechanical Properties of Metals, New York: R. E. Krieger Publishing Co. (1977), pp. 255.

    Google Scholar 

  22. D. E. McRobie, “Cleavage fracture in C—Mn weld metals,” PhD Thesis, Univ. of Cambridge. (1985).

  23. D. Marsh, “Plastic flow and rupture of glass,” Proc. R. Soc.,A282 33 (1964) and Tube Investments Internal Report No. 161.

    Google Scholar 

  24. I. Milne, R. A. Milne, P. A. Ainsworth, and Stewart, A. T., “Assessment of the integrity of structures containing defects,” Central Electricity Generating Board, 1986, R/H.R6, Rev. 3.

  25. D. Neville and J. F. Knott, “Fracture of homogenous and inhomogeneous materials,” J. Mech. Phys. Sol.,34 243–291 (1986).

    Google Scholar 

  26. J. W. Obreimoff, “The splitting strength of mica,” Proc. R. Soc.,A127 290 (1930).

    Google Scholar 

  27. E. Orowan, “Fundamentals of brittle behavior in metals,” Fatigue and Fract. of Met., MIT Symposium, 1950, New York (1952), pp. 139–154.

  28. A. Pineau, “Review of fracture micromechanisms and a local approach to predicting crack resistance in low strength steels,” Advances in Fracture Research. Fracture-81, Pergamon Press (1982), pp. 553–580.

  29. P. A. S. Reed and J. F. Knott, “An investigation of the warm prestressing (WPS) effect in A533B weld metals,” Fatigue Fract. Eng. Mat. Struct.,15 1251–1270 (1992).

    Google Scholar 

  30. J. R. Rice, Mathematical Analysis in the mechanics of fracture,” in: Fracture — An Advanced Treatise, Academic Press, New York (1968), pp. 191–311.

    Google Scholar 

  31. J. R. Rice, “Dislocation nucleation from a crack tip: An analysis based on the Peierls concept,” J. Mech. Phys. Sol.,40 239–271 (1992).

    Google Scholar 

  32. J. R Rice and M. A. Johnson, “The role of large crack tip geometry changes in plane strain fracture,” in: Inelastic Behavior of Solids, McGraw Hill (1970), p. 641.

  33. J. F. Rice and R. M. Thomson, “Ductile vs brittle behavior of crystals,” Phil. Mag.,29 73–97 (1974).

    Google Scholar 

  34. R. O. Ritchie and J. F. Knott, “Mechanisms of fatigue crack growth in low alloy steel,” Acta Met.,21 639–648 (1973).

    Google Scholar 

  35. R. O. Ritchie, J. F. Knott, and J. R. Rice, “On the relationship between critical tensile stress and fracture toughness in mild steel,” J. Mech. Phys. Sol.,21 395–410 (1973).

    Google Scholar 

  36. R. N. Stevens and F. Guiu, “Energy balance concepts in the physics of fracture,” Proc. R. Soc.,A435 169–183 (1991).

    Google Scholar 

  37. J. Sumpter and J. W. Hancock, “Shallow crack toughness of HY80 welds: an analysis based on T stresses,” Int. J. Pressure Vessels Piping,45 207–221 (1991).

    Google Scholar 

  38. J. H. Tweed and J. F. Knott, “Micromechanisms of failure in C — Mn weld metals,” Acta Met.,35 1401–1414 (1987).

    Google Scholar 

  39. V. Volterra, “Sur l'équilibre des corps élastiques multiplement connexes,” Ann. Ec. Norm.,24 401–517 (1907).

    Google Scholar 

  40. H. M. Westergaard, “Bearing pressures and cracks,” Trans. ASME: J. Appl. Mech.,61A 49–53 (1939).

    Google Scholar 

  41. J. R. Willis, “A comparison of the fracture criteria of Griffith and Barenblatt,” J. Mech. Phys. Sol.,15 151–162 (1967).

    Google Scholar 

  42. C. P. You and J. F. Knott, “Effects of crack shape on fracture toughness in a high-strength structural steel,” Eng. Fract. Mech.,24 291–305 (1986).

    Google Scholar 

Download references

Authors

Additional information

The University of Birmingham, Great Britain. Published in Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 29, No. 3, pp. 42–65, May–June, 1993.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knott, J.F. The science and engineering of fracture. Mater Sci 29, 229–248 (1993). https://doi.org/10.1007/BF00558966

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00558966

Navigation