Materials Science

, Volume 30, Issue 4, pp 431–438 | Cite as

Creep crack growth under history-dependent loading

  • F. W. Brust
  • B. S. Majumdar


We discuss the influence of loading history on creep crack growth. Our attention is mainly focused on the following three aspects of this problem: (i) principal laws of history-dependent creep strain of materials; (ii) creep behavior of cracks, including the choice of suitable fracture parameters that may help to predict cracking; (iii) the importance of taking the history-dependent response of the material into account. We performed numerical calculations based on the use of an appropriate constitutive model and fracture theory for (1) and (2), respectively, to analyze results of tests for (3).


Numerical Calculation Constitutive Model Creep Strain Fracture Parameter Fracture Theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Sadananda and P. Shahinian, “Review of the fracture mechanics approach to creep crack growth in structural alloys,”Eng. Fract. Mech. 15, 327–342 (1981).Google Scholar
  2. 2.
    J. D. Landes and J. A. Begley, “Mechanics of crack growth,”ASTM STP 490, Amer. Soc. Test. Mater., Philadelphia, (1976), pp. 128–148.Google Scholar
  3. 3.
    A. Saxena, “Creep crack growth in high temperature ductile materials,”Eng. Fract. Mech. 40, No. 415, 721–736 (1991).Google Scholar
  4. 4.
    C. P. Leung and D. L. McDowell, “Inclusion of primary creep in the estimation of theC 1 parameter,”Intern. J. Fract. 46, 81–104 (1990).Google Scholar
  5. 5.
    H. Riedel,Fracture at High Temperatures, Springer (1987).Google Scholar
  6. 6.
    J. Gittus,Viscoelasticity and Creep Fracture in Solids, Applied Science, London (1975).Google Scholar
  7. 7.
    S. Murakami and N. Ohno, “A constitutive equation of creep based on the concept of a creep hardening surface,”Intern. J. Solids Struct. 18, No. 67, 597–609 (1982).Google Scholar
  8. 8.
    T. Inoue et al., “Evaluation of inelastic constitutive models under plasticity-creep interaction condition,”Nuclear Eng. Design 126, 1–11 (1991).Google Scholar
  9. 9.
    C. F. Shih and M. D. German, “Requirements for a one parameter characterization of crack tip fields by the HRR singularity,”Intern. J. Fract.,17, No. 1 (1981).Google Scholar
  10. 10.
    J. Lemaitre and J. L. Chaboche,Mechanics of Solid Materials, Cambridge University Press, Cambridge (1990).Google Scholar
  11. 11.
    W. S. Blackburn, “Path independent integrals to predict onset of crack instability in an elastic plastic material,”Intern. J. Fract. Mech. 8, 343–346 (1972).Google Scholar
  12. 12.
    K. Kishimoto, S. Aoki, and M. Sakata, “On the path independent integralJ,”Eng. Fract. Mech. 13, 841–850 (1980).Google Scholar
  13. 13.
    F. A. McClintock,Fracture 3, H. Liebowitz (editor), Academic Press (1971).Google Scholar
  14. 14.
    K. Watanabe, “The conservation law related to path independent integral and expression of crack energy density by path independent integral,”Bul. JSME,28, No. 235 (1985).Google Scholar
  15. 15.
    F. W. Brust and S. N. Atluri, “Studies on creep crack growth using theT* integral,”Eng. Fract. Mech. 23, No. 3, 551–574 (1986).Google Scholar
  16. 16.
    G. P. Cherepanov, “A remark on the dynamic invariant or path-independent integral,”Intern. J. Solids Struct. 25 No. 11, 1267–1269 (1989).Google Scholar
  17. 17.
    F. W. Brust, M. Nakagaki, and P. Gilles, “Comparison of elastic-plastic fracture mechanics techniques,”ASTM STP 1074, Amer. Soc. Test. Mater., Philadelphia, (1990), pp. 448–469.Google Scholar
  18. 18.
    K. S. Kim et al., “Elevated temperature crack growth,” in:Final Report to NASA, Lewis Research Center (1988).Google Scholar
  19. 19.
    F. W. Brust and P. A Krishnaswamy, “Computational study of the time dependent crack growth process,” in: A. Nagar (editor),ASME Applied Mechanics Division Volume: Proceedings of ASME 1992 Winter Annual Meeting (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • F. W. Brust
  • B. S. Majumdar

There are no affiliations available

Personalised recommendations