Skip to main content
Log in

Finite-element thermal model for buried-heterostructure diode lasers

  • Papers
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

First results of our new finite-element modelling of thermal properties of GaAs/(AlGa)As buried-heterostructure (BH) lasers are reported. The calculus procedure is very efficient, so we have used a standard IBM PC/XT microcomputer. For the stripe active-region width of 1 μm, the thermal resistance of the laser was determined to be about 70 KW-1, whereas its electrical resistance was about 6 ohms. To the best of our knowledge, isothermal lines within BH lasers have been obtained for the first time. The isothermal configuration enables us to analyse heat-spreading phenomena in BH lasers, which makes possible thermal optimization of the laser construction.

As the first application of the model, the relative influence of the oxide layer thickness on the laser thermal resistance was examined. Because of relatively large lateral dimensions of the laser crystal as compared to the active region, this influence is often neglected, whereas our detailed calculations reveal its importance. An increase in this thickness from 0.1 μm to 0.5 μm is followed by over 15% increase in the laser thermal resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.TSUKADA,J. Appl. Phys. 45 (1974) 4899.

    Google Scholar 

  2. T.TSUKADA,J. Jap. Soc. Appl. Phys. 44 (suppl.) (1975) 33.

    Google Scholar 

  3. R. N.THORNTON, W. J.MOSBY and H. F.CHUNG,Appl. Phys. Lett. 53 (1988) 2669.

    Google Scholar 

  4. S.MUKAI, Y.KANEKO, M.WATANABE, H.ITOH and H.JAJIMA,J. Appl. Phys. 65 (1989) 1810.

    Google Scholar 

  5. K.SHIMOYAMA, Y.INOUE, M.KATOH and H.GATOH,Electron. Lett. 25 (1989) 1096.

    Google Scholar 

  6. G. A.VAWTER, D. R.MYERS, T. M.BRENNAN and B. E.HAMMONS,Appl. Phys. Lett. 56 (1990) 1945.

    Google Scholar 

  7. J. L.LIEVIN, D.BONNEVIE, F.POINGT, C.STARCK, D.SIGOGNE, O.LEGOUZIGOU and L.GOLDSTEIN,Appl. Phys. Lett. 59 (1991) 1407.

    Google Scholar 

  8. W.NAKWASKI,IEE Proc., Pt. J (Optoelectronics) 134 (1987) 87.

    Google Scholar 

  9. W. B.JOYCE and R. W.DIXON,J. Appl. Phys. 46 (1975) 855.

    Google Scholar 

  10. W.NAKWASKI,IEE Proc., Pt. J (Solid State and Electron Devices) 131 (1984) 94.

    Google Scholar 

  11. R. P.SARZALA and W.NAKWASKI,J. Thermal Analysis 36 (1990) 1171.

    Google Scholar 

  12. R. P.SARZALA and W.NAKWASKI,Sov. J. Quantum Electron. (USA) 21 (1991) 842 (see alsoKvantovaya Elektronika 18 (1991) 931 (in Russian)).

    Google Scholar 

  13. Y. S.TOULOUKIAN, R. W.POWELL, C. Y.HO and P. G.KLEMENS,Thermophysical Properties of Matter, Vol. 1,Thermal Conductivity — Metallic Elements and Alloys (IFI/Plenum, New York, 1970).

    Google Scholar 

  14. Y. S.TOULOUKIAN, R. W.POWELL, C. Y.HO and P. G.KLEMENTS,Thermophysical Properties of Matter, Vol. 2,Thermal Conductivity — Nonmetallic Solids (IFI/Plenum, New York, 1970).

    Google Scholar 

  15. S.ADACHI,J. Appl. Phys. 54 (1983) 1844.

    Google Scholar 

  16. T.KOBAYASHI and Y.FURUKAWA,Jap. J. Appl. Phys. 14 (1975) 1981.

    Google Scholar 

  17. W.NAKWASKI,Sov. J. Quantum Electron. (USA) 9 (1979) 1544 (see alsoKvantovaya Elektronika 6 (1979) 2609 (in Russian)).

    Google Scholar 

  18. H. C.CASEYJR, D. D.SELL and M. B.PANISH,Appl. Phys. Lett. 24 (1974) 63.

    Google Scholar 

  19. J. S. BLAKEMORE,J. Appl. Phys. 53 (1982) R123.

    Google Scholar 

  20. S. M.SHE and J. C.IRVINE,Solid-State Electron. 11 (1968) 599.

    Google Scholar 

  21. G. B.STRINGFELLOW,J. Appl. Phys. 50 (1979) 4178.

    Google Scholar 

  22. H.NEUMANN, inSemiconductor Sources of Electromagnetic Radiation, edited by M. A.Herman (Polish Scientific Publishers, Warsaw, 1976) p. 45.

    Google Scholar 

  23. W.NAKWASKI,Opt. Applicata 19 (1989) 329.

    Google Scholar 

  24. O.K.FOUR, OK. ul. Turmoncka 12/123 Warsaw, Poland.

  25. D. H.NEWMAN, D. J.BOND and J.STEFANI,Solid-State Electron. Devices 2 (1978) 41.

    Google Scholar 

  26. J.BUUS,IEEE J. Quantum Electron. QE-15 (1979) 734.

    Google Scholar 

  27. E.DUDA, J.CARBALLES and J.APRUZZESE,IEEE J. Quantum Electron. QE-15 (1979) 812.

    Google Scholar 

  28. J.MANNING,J. Appl. Phys. 52 (1981) 3179.

    Google Scholar 

  29. M.ITO and T.KIMURA,IEEE J. Quantum Electron. QE-17 (1981) 787.

    Google Scholar 

  30. J. J.HUGHES, D. B.GILBERT and F. Z.HAWRYLO,RCA Review 46 (1985) 200.

    Google Scholar 

  31. P.PAPANNAREDDY, W.FERGUSON and J. K.BUTLER,J. Appl. Phys. 62 (1987) 3565.

    Google Scholar 

  32. S.MURATA and K.NISHIMURA,J. Appl. Phys. 70 (1991) 4715.

    Google Scholar 

  33. N.CHINONE, K.SAITO, R.ISO, K.AIKI and N.SHIGE,Appl. Phys. Lett. 35 (1979) 513.

    Google Scholar 

  34. C. H.HENRY, R. A.LOGAN and F. R.MERRITT,IEEE J. Quantum Electron. QE-17 (1981) 2196.

    Google Scholar 

  35. B.MROZIEWICZ, M.BUGAJSKI and W.NAKWASKI,Physics of Semiconductor Lasers (North-Holland/PWN, Amsterdam/Warsaw, 1991).

    Google Scholar 

  36. W.NAKWASKI,J. Appl. Phys. 64 (1988) 159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarzala, R.P., Nakwaski, W. Finite-element thermal model for buried-heterostructure diode lasers. Opt Quant Electron 26, 87–95 (1994). https://doi.org/10.1007/BF00558144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00558144

Keywords

Navigation