Polymer Bulletin

, Volume 29, Issue 1–2, pp 185–191 | Cite as

Effect of the cocatalyst on the copolymerization of ethylene and propylene with high activity Ziegler-Natta catalyst

  • J. Koivumäki
  • J. V. Seppälä
  • L. Kuutti


Ethylene and propylene were copolymerized in n-heptane in the presence of high activity heterogeneous Ziegler-Natta catalyst to study the effect of the cocatalyst on the microstructure and molecular weight of the copolymer. Seven aluminium alkyls of structure Al((CH2)nCH3)3, where n = 0—3, 5, 7 or 11, and one of structure Al(C(CH3)3)3, were used as cocatalysts. The effect of the Al/Ti mole ratio was also studied. Modern molecular modelling techniques were used to calculate the volume of the cocatalyst and the electron density around aluminium. The size of the cocatalyst molecule was found to have a marked effect on the activity of the catalyst: the smaller the cocatalyst the higher the activity. Higher electron density around aluminium increased the randomness of the copolymer.


Polymer Aluminium Ethylene Microstructure Molecular Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Soga K, Sano K, Ohnishi R (1981) Polym Bull 4:157Google Scholar
  2. 2.
    Soga K, Chi S-I, Ohnishi R (1982) Polym Bull 8:473Google Scholar
  3. 3.
    Kashiwa N, Yoshitake J (1984) Makromol Chem 185:1133Google Scholar
  4. 4.
    Doi Y, Ohnishi R, Soga K (1983) Makromol Chem, Rapid Commun 4:169Google Scholar
  5. 5.
    Soga K, Shiono T, Doi Y (1983) Polym Bull 10: 168Google Scholar
  6. 6.
    Baulin A, Ivanchev S, Rodionov A, Kreitsev T, Goldenberg A (1980) Polym Sci USSR, (Engl Trans]) 22:1630Google Scholar
  7. 7.
    Kashiwa N, Mizuno A, Minami S (1984) Polym Bull 12:105Google Scholar
  8. 8.
    Terano M, Ishii K (1990) Makromol Chem, Rapid Commun 11: 439Google Scholar
  9. 9.
    Soga K, Ohtake M, Ohtake R, Doi Y (1984) Polym Commun 25:171Google Scholar
  10. 10.
    Abis L, Bacchilega G, (1986) Makromol Chem 187:1877Google Scholar
  11. 11.
    M Kakugo, Y Naito, K Mizunuma, T Miyatake (1989) Makromol Chem 190: 849Google Scholar
  12. 12.
    S Ivanchev, A Baulin, G Rodionov (1980) J Polym Sci, Polym Chem Ed 18: 2045Google Scholar
  13. 13.
    Soga K, Ohnishi R, Sano T (1982) Polym Bull 7: 547Google Scholar
  14. 14.
    Soga K, Ohnishi R, Doi Y (1983) Polym Bull 9: 299Google Scholar
  15. 15.
    Galli P, Barbé P, Noristi L (1984) Angew Makromol Chem 120: 73Google Scholar
  16. 16.
    Barbé P, Cecchin G, Noristi L (1987) Adv Polym Sci 81: 1Google Scholar
  17. 17.
    Böhm L (1978) Polymer 19: 553Google Scholar
  18. 18.
    Duck E, Grant D, Butcher A, Timms D (1974) Eur Polym J 10: 77Google Scholar
  19. 19.
    Cheng H N, (1984) Macromolecules 17: 1950Google Scholar
  20. 20.
    Scholte TH, Meijerink N, Schoffeleers H, Brands A (1984) J Appl Polym Sci 29:3763Google Scholar
  21. 21.
    Dewar M J S, Thiel W (1977) J Am Chem Soc 99: 4899Google Scholar
  22. 22.
    MOPAC, QCPE-program #455 (version 5.00), A General Molecular Orbital Package, Qantum Chemistry Program Exchange, Indiana UniversityGoogle Scholar
  23. 23.
    Cuphem-x: Molecular modelling system, Chemical Design Ltd., Oxford, UKGoogle Scholar

Copyright information

© Springer-Veriag 1992

Authors and Affiliations

  • J. Koivumäki
    • 1
  • J. V. Seppälä
    • 1
  • L. Kuutti
    • 1
  1. 1.Department of Chemical EngineeringHelsinki University of TechnologyEspoFinland

Personalised recommendations