Skip to main content
Log in

Theories for the development of rolling textures in polyoxymethylene

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two alternative models for the development of texture in rolled polyoxymethylene are developed. The first proposes that slip systems in the crystalline phase are the main deformation mechanisms, and calculates crystal rotations on the assumption of a uniform stress state in rolling. The second develops Wilchinsky's model of rigid crystals rotating in a deforming amorphous matrix. The former is shown to be in better agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. M. Gezovich andP. H. Geil,J. Mater. Sci. 6 (1971) 509.

    Google Scholar 

  2. E. S. Clark,S.P.E. J. 23 (1967) 46.

    Google Scholar 

  3. H. W. Starkweather, F. C. Wilson andE. S. Clark,J. Polymer Sci. Letters 9 (1971) 623.

    Google Scholar 

  4. J. E. Preedy andE. J. Wheeler,Nature Phys. Sci. 60 (1972) 236.

    Google Scholar 

  5. E. P. Chang, R. W. Gray andN. G. McCrum,J. Mater. Sci. 8 (1973) 397.

    Google Scholar 

  6. K. O'Leary andP. H. Geil,J. Macromol. Sci. B 2 (1968) 261.

    Google Scholar 

  7. E. A. Calnan andC. J. B. Clews,Phil. Mag. 41 (1950) 1085.

    Google Scholar 

  8. R. Von Mises,Z. Angew. Math. Mech. 8 (1928) 161.

    Google Scholar 

  9. A. Kelly andG. W. Groves, “Crystallography and Crystal Defects” (Longman, London, 1970) p. 185.

    Google Scholar 

  10. I. L. Dillamore andW. T. Roberts,Acta Met. 12 (1964) 281.

    Google Scholar 

  11. T. Leffers,Phys. Stat. Sol. 25 (1968) 337.

    Google Scholar 

  12. J. S. Kallend andG. J. Davies,Phil. Mag. 25 (1972) 471.

    Google Scholar 

  13. J. F. W. Bishop andR. Hill,Phil. Mag. 42 (1951) 414.

    Google Scholar 

  14. C. F. Hammer, T. A. Koch andJ. F. Whitney,J. Appl. Polymer Sci. 1 (1959) 169.

    Google Scholar 

  15. Z. W. Wilchinsky,Polymer 5 (1964) 271.

    Google Scholar 

  16. I. L. Hay andA. Keller,Kolloid-Z. u. Z. Polymere 204 (1965) 43.

    Google Scholar 

  17. T. T. Wang,J. Polymer Sci. 12 (1974) 145.

    Google Scholar 

  18. D. C. Bassett,Phil. Mag. 10 (1964) 595.

    Google Scholar 

  19. C. A. Garber andP. H. Geil,Die Makromol. Chemie 113 (1968) 251.

    Google Scholar 

  20. R. J. Young, P. B. Bowden, J. M. Richie andJ. G. Rider,J. Mater. Sci. 8 (1973) 23.

    Google Scholar 

  21. J. Schultz, “Polymer Materials Science” (Prentice Hall, New Jersey, 1974) p. 91.

    Google Scholar 

  22. J. D. Eshelby andA. N. Stroh,Phil. Mag. 42 (1951) 1401.

    Google Scholar 

  23. G. W. Rowe, “Principles of Metalworking” (Arnold, London, 1965) Ch. 9.

    Google Scholar 

  24. B. Wunderlich, “Macromolecular Physics”, Vol.1 (Academic Press, New York and London, 1973).

    Google Scholar 

  25. G. Carazzola,J. Polymer Sci. A 1 (1963) 1573.

    Google Scholar 

  26. J. G. Williams andH. Ford,J. Mech. Eng. Sci. 6 (1964) 405.

    Google Scholar 

  27. G. Y. Chin andE. A. Nesbitt,Trans. Amer. Inst. Min. Met. Petr. Eng. 236 (1966) 69.

    Google Scholar 

  28. G. Carazzola andM. Mammi,J. Polymer Sci. 1 (1963) 965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miles, M.J., Mills, N.J. Theories for the development of rolling textures in polyoxymethylene. J Mater Sci 10, 2092–2111 (1975). https://doi.org/10.1007/BF00557488

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00557488

Keywords

Navigation