Biochemical Genetics

, Volume 32, Issue 1–2, pp 9–24 | Cite as

Insecticide resistance and malathion carboxylesterase in the sheep blowfly,Lucilia cuprina

  • Steven Whyard
  • Robyn J. Russell
  • Virginia K. Walker


Resistance to the organophosphorus insecticide malathion in genetically related strains of the Australian sheep blowflyLucilia curprina was examined. Separate lines of blowflies were established by homozygosis of the fourth chromosome of the parental RM strain. Both the RM and the derived resistant (der-R) strains are approximately 100 times more resistant to malathion than the related susceptible der-S strain, resistance being correlated with a 45- to 50-fold increase in a malathion carboxylesterase (MCE) activity. MCE has a pH optimum ranging between 6.6 and 8.0 and is strongly inhibited by the carboxylesterase inhibitors triphenyl phosphate, paraoxon, and diiospropylfluorophosphate. Subcellular fractionation revealed that MCE was localized predominantly to the cytosol and mitochondria in both resistant and susceptible blowflies. A single MCE was purified to homogeneity from RM blowflies. It has a pI of 5.5, is a monomer of 60.5 kDa, and hydrolyzes malathion with aVmax of 755 nmol/min/mg protein and aK m of 11.0 µM. L. cuprina have thus evolved a remarkable MCE which is faster and more efficient at hydrolyzing a specific insecticide than any other insect esterase yet described.

Key words

insecticide resistance malathion carboxylesterase Lucilia cuprina 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldridge, W. N. (1953). Serum esterases. 1. Two types of esterases (A and B) hydrolysing p-nitrophenyl acetate, propionate, and butyrate, and a method for their determination.Biochem. J. 53110.Google Scholar
  2. Arnold, J. T., and Whitten, M. J. (1976). The genetic basis for organophosphorus resistance in the Australian sheep blowfly,Lucilia cuprina (Wiedemann) (Diptera, Calliphoridae).Bull. Entomol. Res. 66561.Google Scholar
  3. Beeman, R. W., and Schmidt, B. A. (1982). Biochemical and genetic aspects of malathion-specific resistance in the Indianmeal moth (Lepidoptera: Pyralidae).J. Econ. Entomol. 75945.Google Scholar
  4. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72248.Google Scholar
  5. Devonshire, A. L., and Moores, G. D. (1982). A carboxylesterase with broad substrate specificity causes organophosphorus, carbamate, and pyrethroid resistance in peachpotato aphids (Myzus persicae).Pest. Biochem. Physiol. 18235.Google Scholar
  6. Ellman, G. L., Courtney, K. D., Andres, V., Jr., and Feathertone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity.Biochem. Pharmacol. 788.Google Scholar
  7. Finney, D. J. (1952).Probit Analysis 2nd ed., Cambridge University Press, Cambridge, London.Google Scholar
  8. Foster, G. G., Whitten, M. J., Konovalov, C., Arnold, J. T., and Maffi, G. (1981). Autosomal genetic maps of the Australian sheep blowfly,Lucilia cuprina dorsalis R.-D. (Diptera: Calliphoridae), and possible correlations with the linkage maps ofMusca domestica (L.) andDrosophila melanogaster (Mg.).Genet. Res. 3755.Google Scholar
  9. Fournier, D., Bride, J. M., Mouches, C., Raymond, M., Magnin, M., Berge, J.-B., Pasteur, N., and Georghiou, G. (1987). Biochemical characterization of the esterases A1 and B1 associated with organophosphate resistance in theCulex pipiens L. complex.Pest. Biochem. Physiol. 27211.Google Scholar
  10. Halliday, W. R. (1988). Tissue specific esterase and malathion carboxylesterase activity in larvae of malathion-resistantPlodia interpunctella (Hubner) (Lepidoptera: Pyralidae).J. Stored Prod. Res. 2491.Google Scholar
  11. Harlow, E., and Lane, D. (1988).Antibodies: A Laboratory Manual Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  12. Hemingway, J. (1982). The biochemical nature of malathion resistance inAnopheles stephensi from Pakistan.Pest. Biochem. Physiol. 17149.Google Scholar
  13. Heymann, E. (1980). Carboxylesterases and amidases. In Jakoby, W. (ed.),Enzymatic Basis of Detoxication, Vol. II Academic Press, New York, pp. 291–323.Google Scholar
  14. Horie, Y. (1967). Dehydrogenase in carbohydrate metabolism in larvae of the silkwormBombyx mori.J. Insect Physiol. 131163.Google Scholar
  15. Hughes, P. B. (1982). Organophosphorus resistance in the sheep blowfly,Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae): A genetic study incorporating synergists.Bull. Entomol. Res. 72573.Google Scholar
  16. Hughes, P. B., and Raftos, D. A. (1985). Genetics of an esterase associated with resistance to organophosphorus insecticides in the sheep blowfly,Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae).Bull. Entomol. Res. 75535.Google Scholar
  17. Hughes, P. B., Green, P. E., and Reichmann, K. G. (1984). Specific resistance to malathion in laboratory and field populations of the Australian sheep blowfly,Lucilia cuprina (Diptera: Calliphoridae).J. Econ. Entomol. 771400.Google Scholar
  18. Kao, L. R., Motoyama, N., and Dauterman, W. C. (1984). Studies on hydrolases in various housefly strains and their role in malathion resistance.Pest. Biochem. Physiol. 2286.Google Scholar
  19. Kao, L. R., Motoyama, N., and Dauterman, W. C. (1985). The purification and characterization of esterases from insecticide resistant and susceptible houseflies.Pest. Biochem. Physiol. 23228.Google Scholar
  20. Kritch, K. (1971). Carboxylic ester hydrolases. In Boyer, P. D. (ed.),The Enzymes, Vol. 5 3rd ed., Academic Press, New York, pp. 43–69.Google Scholar
  21. Krueger, H. R., and O'Brien, R. D. (1959). Relationship between metabolism and differential toxicity of malathion in insects and mice.J. Econ. Entomol. 521063.Google Scholar
  22. Laemmli, J. I. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227680.Google Scholar
  23. Motoyama, N., Kao, L. R., Lin, P. T., and Dauterman, W. C. (1984). Dual role of esterases in insecticide resistance in the green rice leafhopper.Pest. Biochem. Physiol. 21139.Google Scholar
  24. Picollo de Villar, M. I., van der Pas, L., Smissaert, H. and Oppenoorth, F. (1983). An unusual type of malathion-carboxylesterase in a Japanese strain of housefly.Pest. Biochem. Physiol. 1960Google Scholar
  25. Plapp, F. W., Jr., and Wang, T. C. (1983). Genetic origins of insecticide resistance. In Georghiou, G. P., and Saito, T. (eds.),Pest Resistance to Pesticides Plenum Press, New York, pp. 47–70.Google Scholar
  26. Posnett, D. N., McGrath, H., and Tam, J. P. (1988). A novel method for producing anti-peptide antibodies.J. Biol. Chem. 2631719.Google Scholar
  27. Price, N. R. (1991). Insect resistance to insecticides: Mechanisms and diagnosis.Comp. Biochem. Physiol. 100C319.Google Scholar
  28. Raftos, D. A. (1986). The biochemical basis of malathion resistance in the sheep blowflyLucilia cuprina.Pest. Biochem. Physiol. 26302.Google Scholar
  29. Raftos, D. A., and Hughes, P. B. (1986). Genetic basis of a specific resistance to malathion in the Australian sheep blowfly,Lucilia cuprina (Diptera: Calliphoridae).J. Econ. Entomol. 79553.Google Scholar
  30. Towbin, H., Staehelin, T., and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacryamide gels to nitrocellulose sheets: Procedure and some applications.Proc. Natl. Acad. Sci. 764350.Google Scholar
  31. Veeger, C., Der Vartanian, D. V., and Zeylemaker, W. P. (1969). Succinic dehydrogenase. In Lowenstein, J. M. (ed.),Methods of Enzymology, Vol. 13 Academic Press, New York, pp. 80–90.Google Scholar
  32. Whyard, S., Downe, A. E. R., and Walker, V. K. (1994a). Purification of an esterase conferring insecticide resistance in the mosquitoCulex tarsalis. Insect Biochem. Mol. Biol. in press.Google Scholar
  33. Whyard, S., Downe, A. E. R., and Walker, V. K. (1994b). Characterization of a novel esterase conferring insecticide resistance in the mosquitoCulex tarsalis. (submitted for publication).Google Scholar
  34. Ziegler, R., Whyard, S., Downe, A. E. R., Wyatt, G. R., and Walker, V. K. (1987). General esterase, malathion carboxylesterase, and malathion resistance inCulex tarsalis.Pest. Biochem. Physiol. 28279.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Steven Whyard
    • 1
  • Robyn J. Russell
    • 2
  • Virginia K. Walker
    • 1
  1. 1.Department of Biology and Insect Biotech CanadaQueen's UniversityKingstonCanada
  2. 2.Division of EntomologyCSIROCanberraAustralia

Personalised recommendations