Skip to main content
Log in

Rejuvenation procedures to recover creep properties of nickel-base superalloys by heat treatment and hot isostatic pressing techniques

A review

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The rejuvenation procedures to recover the creep properties of nickel-base superalloys by atmospheric pressure heat treatment and hot isostatic pressing techniques have been reviewed in detail. It is very important that such treatments be applied at an optimum stage in the service life of a turbine blade. In other words, the rejuvenation procedures must be applied early enough to prevent catastrophic failures or irreparable damage and late enough to give a cost-effective benefit. The optimum stage at which to undertake a rejuvenation procedure to extend the creep lives of superalloys is immediately prior to the tertiary stage. By using these techniques it is not possible to extend the creep lives of superalloys indefinitely because of the accumulation of some “permanent” damage incurred during service conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ERF:

Economic repair factor

P r :

Price of repaired and rejuvenated part

P n :

Price of new part

L n :

Potential operational life of new part

L r :

Potential operational life of repaired/rejuvenated part

N :

Cavity density or number of cavities per unit area (mm−2)

n v :

Number of cavities per unit volume (mm−3)

ɛ:

Creep strain

σ1 :

Maximum principal stress (MPa)

¯σ:

von Mises effective shear stress (MPa)

t f :

Time to failure

t t :

Time to commencement of tertiary creep

λ:

Creep damage tolerance parameter

ɛf :

Strain at fracture (or failure)

T m :

Absolute melting temperature

σ0 :

Friction stress

r :

Spherical radius of cavities

2x:

Intercavity spacing

δ:

Grain boundary width

P I :

Cavity gas pressure

P H :

External hydrostatic pressure

Ω:

Atomic volume

k :

Boltzmann constant

T :

Absolute temperature

γ:

Surface energy of the cavity

D b :

Grain boundary diffusion coefficient

φd :

Ductility recovery parameter

ɛ′:

Strain to reach the same acceleration after recovery annealing

ɛ0 :

Strain necessary for standard material to reach a given acceleration of the secondary-creep rate in the tertiary region

ɛt :

Strain needed to have produced the reduced cavity volume after rejuvenation annealing

\(\dot \varepsilon \) :

Creep rate

\(\dot \varepsilon _{\text{s}} \) :

Secondary or minimum creep rate

ɛ1 :

Strain previous to the regenerative annealing period

n :

Total number of strain/regenerative anneal cycles

φv :

Recovery parameter for cavity volume

V 0 :

Original total cavity volume at the start of the recovery

V t :

Cavity volume after recovery annealing for a timet

References

  1. R. J. Hrubec andW. J. McCall,Turbomachinary Internat. 28 (5) (1987) 26.

    Google Scholar 

  2. M. McLean andM. S. Peck, “Cost 50 — Materials for Gas Turbines — UK 10; Comparison of Property Regeneration Techniques and Life Prediction Procedures Applied to Laboratory Tested and Service Exposed Ni-Cr Alloys”, NPL Report DMA (A) (1984) p. 91.

  3. J. Wortmann,Mater. Sci. Tech. 1 (1985) 644.

    CAS  Google Scholar 

  4. W. B. Busch andJ. Wortman, in “High Temperature Alloys, Their Exploitable Potential”, edited by J. B. Marriott, M. Merz, J. Nihoul and J. Ward (Elsevier Applied Science, London, 1987) p. 377.

    Google Scholar 

  5. M. Lamberigts andCh. Lecomte-Mertens, in “High Temperature Alloys for Gas Turbines and Other Applications”, Proceedings of Conference, Liege, October 1986, Part I, edited by W. Betz, R. Brunetaud, D. Coutsouradis, H. Fischmeister, T. B. Gibbons, I. Kvernes, Y. Lindblom, J. B. Marriott and D. B. Meadowcroft (Reidel Publishing Co., 1986) p. 821.

  6. J. W. Underhill, in Proceedings of Metal Society Conference on Refurbishing of Superalloy Components for Gas Turbines, London, May (1984) (Institute of Metals, London).

    Google Scholar 

  7. Idem., Mater. Sci. Tech. 1 (1985) 604.

    Google Scholar 

  8. T. B. Gibbons andB. E. Hopkins,Metal Sci. 18 (1984) 273.

    CAS  Google Scholar 

  9. H. Burt, J. P. Dennison, I. C. Elliot andB. Wilshire,Mater. Sci. Engng 53 (1982) 245.

    CAS  Google Scholar 

  10. G. Jianting, D. Ranucci, E. Picco andP. M. Strocchi,Metall. Trans. 14A (1983) 2329.

    Google Scholar 

  11. R. A. Stevens andP. E. J. Flewitt,Mater. Sci. Engng 50 (1981) 271.

    CAS  Google Scholar 

  12. G. S. Ansell andJ. Weertman,Trans. Met. Soc. AIME 215 (1959) 838.

    CAS  Google Scholar 

  13. D. McLean,Met. Rev. 7 (1962) 481.

    CAS  Google Scholar 

  14. N. J. Grant, “The Strengthening of Metals”, edited by D. Pecker (Reinhold, New York, 1964) p. 163.

    Google Scholar 

  15. A. K. Koul andW. Wallace,Metall. Trans. 13A (1982) 673.

    Google Scholar 

  16. E. Nembach andG. Neite,Prog. Mater. Sci. 29 (1985) 177.

    CAS  Google Scholar 

  17. W. C. Hagel andC. T. Sims, “Superalloys”, Vol. 1, 1st Edn (Wiley, New York, 1972) p. 114.

    Google Scholar 

  18. G. Guo, H. Shen andQ. Cai, in Proceedings of 4th International Conference on Mechanical Behaviour of Materials, Stockholm, August 1983, edited by J. Carlsson and N. G. Ohlson, Vol. 1, p. 231.

  19. A. K. Koul andR. Thamburaj,Metall. Trans. 16A (1985) 17.

    CAS  Google Scholar 

  20. A. K. Koul andR. Castillo,ibid. 19A (1988) 2049.

    CAS  Google Scholar 

  21. A. K. Koul, LTR-ST-1284 (National Research Council Canada, Ottawa, 1981).

    Google Scholar 

  22. W. Betteridge andJ. Heslop, “The Nimonic Alloys”, 2nd Edn (Arnold, London, 1974) p. 63.

    Google Scholar 

  23. A. J. Perry,J. Mater. Sci. 9 (1974) 1016.

    CAS  Google Scholar 

  24. P. W. Davies, J. P. Dennison andD. Sidey,J. Int. Met. 101 (1973) 153.

    CAS  Google Scholar 

  25. G. R. Leverant andB. H. Kear,Metall. Trans. 1 (1971) 491.

    Google Scholar 

  26. B. E. Hopkins andT. B. Gibbons, in Proceedings of Conference on Creep Strength in Steels and High Temperature Alloys, London, September 1972 (Iron and Steel Institute, London, 1972) p. 165.

    Google Scholar 

  27. J. N. Greenwood,J. Iron Steel Inst. 171 (1952) 380.

    CAS  Google Scholar 

  28. Idem., ibid. 176 (1954) 268.

    Google Scholar 

  29. J. N. Greenwood, D. R. Miller andJ. W. Suiter,Acta Metall. 2 (1954) 250.

    CAS  Google Scholar 

  30. R. W. Ballufi andL. L. Seigle,ibid. 5 (1957) 449.

    Google Scholar 

  31. W. Pavinich andR. Raj,Metall. Trans. 8A (1977) 1917.

    CAS  Google Scholar 

  32. S. H. Goods andW. D. Nix,Acta Metall. 26 (1978) 753.

    CAS  Google Scholar 

  33. E. P. George, in “Creep and Fracture of Engineering Materials and Fractures”, Proceedings of 3rd International Conference, Swansea, April 1987, edited by B. Wilshire and R. W. Evans (Institute of Metals, London) pp. 169–181.

    Google Scholar 

  34. J. Gittus, “Creep, Viscoelasticity and Creep Fracture in Solids” (Applied Science, London, 1975).

    Google Scholar 

  35. H. R. Tipler andB. E. Hopkins,Met. Sci. J. 10 (1976) 47.

    CAS  Google Scholar 

  36. D. Lonsdale andP. E. J. Flewitt,Mater. Sci. Engng 41 (1979) 127.

    CAS  Google Scholar 

  37. B. F. Dyson andD. McLean,Met. Sci. J. 6 (1972) 220.

    CAS  Google Scholar 

  38. B. F. Dyson, M. J. Loveday andM. J. Rogers,Proc. R. Soc. A349 (1976) 245.

    Google Scholar 

  39. B. F. Dyson, unpublished work (1980).

  40. B. J. Cane,Mater. Forum 9 (1986) 5.

    CAS  Google Scholar 

  41. P. W. Davies andR. W. Evans,Acta Metall. 13 (1965) 353.

    CAS  Google Scholar 

  42. R. C. Gifkins, “Fracture” (Wiley, New York, 1959) p. 579.

    Google Scholar 

  43. P. W. Davies, J. P. Dennison andH. E. Evans,J. Inst. Met. 94 (1966) 270.

    CAS  Google Scholar 

  44. G. W. Greenwood, in Proceedings of 3rd International Conference on the Strength of Metals and Alloys, Cambridge, (1973) (Iron and Steel Institute, London) p. 218.

    Google Scholar 

  45. B. F. Dyson andD. McLean,Met. Sci. J. 11 (1977) 37.

    CAS  Google Scholar 

  46. B. J. Cane, in Proceedings of 3rd International Conference on the Mechanical Behaviour of Materials, Cambridge, U.K., August 1979, edited by K. J. Miller and R. F. Smith, Vol. 3 (Pergamon, Oxford, 1979) p. 213.

    Google Scholar 

  47. D. Lonsdale andP. E. J. Flewitt,Scripta Metall. 11 (1977) 1119.

    CAS  Google Scholar 

  48. N. G. Needham andG. W. Greenwood,Met. Sci. J. 9 (1975) 258.

    CAS  Google Scholar 

  49. B. Neubauer andU. Wedel, “Restlife Estimation of Creeping Components by Means of Replicas”, Advances in Life Prediction Methods (American Society of Mechanical Engineers, New York, 1983) pp. 307–314.

    Google Scholar 

  50. J. P. Dennison andB. Wilshire, in “Fracture 1977”, Vol. 2, Proceedings of ICF4, Waterloo, Canada, June (1977), edited by D. M. R. Taplin (University Waterloo Press, Canada) p. 635.

    Google Scholar 

  51. J. P. Dennison, P. D. Holmes andB. Wilshire,Mater. Sci. Engng 33 (1978) 35.

    CAS  Google Scholar 

  52. A. S. Nemy andF. N. Rhines,Trans. TMS-AIME 215 (1959) 992.

    CAS  Google Scholar 

  53. J. P. Dennison andB. Wilshire,J. Inst. Metals 91 (1962) 343.

    Google Scholar 

  54. P. W. Davies andB. Wilshire, “Structural Processes in Creep”, Iron and Steel Institute Special Report (London, 1960) p. 34.

  55. K. R. Williams andB. Wilshire,Mater. Sci. Engng 28 (1977) 289.

    CAS  Google Scholar 

  56. P. W. Davies andJ. P. Dennison,Met. Sci. J. 9 (1975) 319.

    CAS  Google Scholar 

  57. M. F. Ashby andB. F. Dyson, in Proceedings of 6th International Conference on Fracture (ICF6), New Delhi, India, December 1984, Vol. 1, edited by S. R. Valluri, D. M.R. Taplin, P. Rama Rao, J. F. Knott and R. Dubey (Pergamon, Exeter, 1986) p. 3.

    Google Scholar 

  58. F. A. Leckie andD. R. Hayhurst,Acta Metall. 25 (1977) 1059.

    Google Scholar 

  59. R. W. Evans andB. Wilshire, in “Design of High Temperature Metallic Components”, edited by R. C. Hurst (Elsevier Applied Science, London, 1984) pp. 51–88.

    Google Scholar 

  60. H. E. Evans andJ. S. Waddington,J. Nucl. Mater. 30 (1969) 337.

    Google Scholar 

  61. P. W. Davies, J. P. Dennison andH. E. Evans,J. Inst. Metals 95 (1967) 231.

    CAS  Google Scholar 

  62. G. K. Walker andH. E. Evans,Met. Sci. J. 4 (1970) 155.

    CAS  Google Scholar 

  63. R. A. Stevens andP. E. J. Flewitt,Acta Metall. 27 (1979) 67.

    CAS  Google Scholar 

  64. Idem., Mater. Sci Engng 50 (1981) 271.

    CAS  Google Scholar 

  65. R. W. Hart, andH. Gayter,J. Inst. Metals 96 (1968) 338.

    Google Scholar 

  66. R. A. Stevens andP. E. J. Flewitt,Mater. Engng 3 (1982) 461.

    Google Scholar 

  67. P. J. James, in “Hot Isostatic Technology”, edited by P. J. James (Applied Science, UK, 1983) pp. 231–237.

    Google Scholar 

  68. Yu. A. Rybakova andA. A. Yudin,Phys. Met. Metallog. 28 (4) (1969) 181.

    Google Scholar 

  69. D. C. Stewart, M. D. Ross andG. T. Bennett, AFML-TR-79-4039, Pratt and Whitney Aircraft Group, United Technologies Corporation, Box 2691, West Palm Beach, Florida 33402 (1979).

    Google Scholar 

  70. K. Friedl,Brown Boveri 53 (1966) 114.

    CAS  Google Scholar 

  71. A. K. Koul andW. Wallace, NAE ITR-ST-1235 (National Research Council Canada, Ottawa, 1981).

    Google Scholar 

  72. Idem., NAE LTR-ST-1242 (National Research Council Canada, Ottawa, 1981).

    Google Scholar 

  73. H. Burt, J. P. Dennison andB. Wilshire,Met. Sci. J. 13 (1979) 295.

    CAS  Google Scholar 

  74. G. R. Leverent andB. H. Kear,Metall. Trans. 1 (1970) 491.

    Google Scholar 

  75. W. Betteridge andA. W. Franklin,J. Inst. Metals 85 (1956–7) 473.

    Google Scholar 

  76. C. W. Weaver,ibid. 88 (1959–60) 296.

    Google Scholar 

  77. A. Gittins,Nature 214 (1967) 586.

    CAS  Google Scholar 

  78. Idem., Acta Metall. 16 (1968) 517.

    CAS  Google Scholar 

  79. S. R. Bell,Mater. Sci. Engng 1 (1985) 629.

    CAS  Google Scholar 

  80. R. Burgel, J. Ellner andK. Schneider,Diesel & Gas Turbine World-wide 20 (Sept. 1988) 34, 36, 40.

    Google Scholar 

  81. L. M. Wyatt,Mater. Sci. Engng 7 (1971) 237.

    CAS  Google Scholar 

  82. D. Lonsdale andP. E. J. Flewitt,ibid. 32 (1978) 167.

    CAS  Google Scholar 

  83. R. C. Boettner andW. D. Robertson,Trans. Metall. Soc. AIME 221 (1961) 613.

    CAS  Google Scholar 

  84. R. T. Ratcliffe andG. W. Greenwood,Phil. Mag. 12 (1965) 59.

    CAS  Google Scholar 

  85. P. W. Davies,Jernkont. Annl. 155 (1971) 332.

    Google Scholar 

  86. D. Hull andD. E. Rimmer,Phil Mag. 10 (1959) 673.

    Google Scholar 

  87. M. F. Ashby,Acta Metall. 22 (1974) 275.

    CAS  Google Scholar 

  88. W. B. Beeré andG. W. Greenwood,Met. Sci. J. 5 (1971) 107.

    Google Scholar 

  89. G. Van Drunen, J. Liburdi, W. Wallace andT. Terada, in Proceedings of AGARD-SMP Conference on Advanced Fabrication Processes, Florence, September 1978, AGARD-CP-256 (North Atlantic Treaty Organisation) pp. 13-1–13-12.

  90. P. H. Floyd, W. Wallace andJ. P. Immarigeon, in Proceedings of International Conference on Heat Treatment, International Congress on Metals Engineering, Birmingham, UK, September 1981 (Metals Society, London, 1981). p. 97.

    Google Scholar 

  91. A. K. Koul, W. Wallace andR. Thamburaj, in Proceedings of AGARD-PEP Conference on Engine Cyclic Durability by Analysis and Testing, Liesse, The Netherlands, 1984, AGARD-CP-368, pp. 10-1–10-31.

  92. A. K. Koul, J. P. Immarigeon, R. Castillo, P. Lowden andJ. Liburdi, in “Superalloys 1988”, Proceedings of Conference, Champion, Pennslyvania, September 1988, edited by D. N. Duhl, G. Maurer, S. Antolovich, C. Lund and S. Reichman (Metallurgical Society) p. 755.

  93. P. Lowden andI. Liburdi, “Rejuvenation of Nimonic 80A Blades”, Liburdi Engineering Report No. 84-12-87B (1986).

  94. R. T. Holt andW. Wallace,Int. Met. Rev. 203 (1976) 1.

    Google Scholar 

  95. A. K. Koul andD. Murphy,Microstruct. Sci. 11 (1982) 79.

    Google Scholar 

  96. A. K. Koul andG. H. Gessinger,Acta Metall. 31 (1983) 1016.

    Google Scholar 

  97. R. Castillo, A. K. Koul andI. P. Immarigeon, in “Superalloys 1988”, Proceedings of Conference, Champion, Pennsylvania, September 1988, edited by D. N. Duhl, G. Maurer, S. Antolovich, C. Lund and S. Reichman (Metallurgical Society, 1988) p. 805.

  98. J. Brett andL. L. Seigle,Acta Metall. 14 (1963) 467.

    Google Scholar 

  99. K. H. Westamacott, R. E. Smallman andP. Dobson,Met. Sci. J. 2 (1968) 177.

    Google Scholar 

  100. T. E. Volin andR. W. Ballufi,Phys. Status Solidi 25 (1968) 163.

    CAS  Google Scholar 

  101. Idem., Appl. Phys. Lett. 11 (1967) 259.

    Google Scholar 

  102. M. H.fnTikkaaen,Planseeber Pulv. Metall. (1966) 70.

  103. N. C. Kothari,J. Less-Common Metals 5 (1963) 140.

    CAS  Google Scholar 

  104. G. K. Walker andH. E. Evans,Met. Sci. J. 4 (1970) 210.

    Google Scholar 

  105. H. E. Evans, “Mechanisms of Creep Fracture” (Elsevier Applied Science, London, 1984) pp. 257–275.

    Google Scholar 

  106. M. F. Ashby andR. C. Gifkins,Scripta Metall. 4 (1970) 738.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldan, A. Rejuvenation procedures to recover creep properties of nickel-base superalloys by heat treatment and hot isostatic pressing techniques. J Mater Sci 26, 3409–3421 (1991). https://doi.org/10.1007/BF00557126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00557126

Keywords

Navigation