Fibre Chemistry

, Volume 21, Issue 5, pp 396–399 | Cite as

Connection between velocity of sound, sound damping coefficient, and strength of ultra-high modulus fibres

  • M. P. Nosov
  • B. Kh. Yunusov
  • I. F. Khudoshev
  • S. V. Muzylev
Physicomechanical Properties And Application Of Man-Made Fibres


The strength of high-modulus yarns is connected by a direct linear dependence with the rate of sound propagation and by an inverse linear dependence with the damping coefficient of ultrasonic waves.

Thermal aging leads to a monotonic decrease in yarn strength and rate of sonic wave propagation, and to a linear increase in the damping coefficient, a change in molecular orientation always causing a more marked change in the damping coefficient than in the velocity of sound.

The linear dependence between c (σ) and α (σ) is broken up in the case of heat-drawn yarns; this is connected with formation of defects in the material.


Polymer Wave Propagation Linear Dependence Linear Increase Marked Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    I. I. Perepechko, Acoustic Methods of Polymer Investigation [in Russian], Khimiya, Moscow (1973).Google Scholar
  2. 2.
    B. D. Rysyuk and M. P. Nosov, Mechanical Anisotropy of Polymers [in Russian], Naukova Dumka, Kiev (1978).Google Scholar
  3. 3.
    A. I. Potapov and F. P. Pekker, Nondestructive Control of Constructions from Composite Materials [in Russian], Mashinostroenie, Leningrad (1977).Google Scholar
  4. 4.
    M. V. Gemberg, S. V. Ilyushin, and V. I. Smirnoy, Nondestructive Methods of Control for Shipbuilding Fiberglass Plastics [in Russian], Sudostroenie, Leningrad (1971).Google Scholar
  5. 5.
    A. K. Malmeister, Elasticity and Nonelasticity of Concrete [in Russian], Akad. Nauk Latv. SSR, Riga (1957).Google Scholar
  6. 6.
    V. A. Latishenko, Mekh. Polim., No. 2, 334–343 (1967).Google Scholar
  7. 7.
    K. E. Perepelkin, Mekh. Polim., No. 6, 845–856 (1966).Google Scholar
  8. 8.
    V. A. Latishenko, Diagnosis of the Strength and Stiffness of Materials [in Russian], Zinatne, Riga (1968).Google Scholar
  9. 9.
    V. I. Vettegren', A. A. Kusov, L. N. Korzhavin, et al., Vysokomol. Soed., Ser. A,24, No. 9, 1958–1967 (1982).Google Scholar
  10. 10.
    S. N. Zhurkov and V. A. Petrov, Dokl. Akad. Nauk SSSR,329, No. 6, 1316–1319 (1978).Google Scholar
  11. 11.
    A. A. Kusov, Fiz. Tverd. Tela,21, No. 10, 3095–3099 (1979).Google Scholar
  12. 12.
    S. N. Zhurkov, Fiz. Tverd. Tela,22, No. 1, 3344–3349 (1980).Google Scholar
  13. 13.
    A. A. Kusov and V. I. Vettegren', Fiz. Tverd. Tela,22, No. 11, 3350–3357 (1980).Google Scholar
  14. 14.
    V. Ya. Genin, A Study of the Resource Parameters of Mechanical Properties of Tire Cord Materials, Author's Abstract of Candidate's Dissertation in Technical Sciences, Moscow (1972).Google Scholar
  15. 15.
    I. F. Brener, Application of the Acoustic Method for Nondestructive Control of Textile Materials Quality, Author's Abstract of Candidate's Dissertation in Technical Sciences, Moscow (1974).Google Scholar
  16. 16.
    B. Kh. Yunusov and M. P. Nosov, Methodological Bases for Measurement and Calculations of Damping of Ultrasonic Energy in Fibres, NII Informatsii Gosplane Uzb. SSR, Tashkent (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • M. P. Nosov
  • B. Kh. Yunusov
  • I. F. Khudoshev
  • S. V. Muzylev

There are no affiliations available

Personalised recommendations