Skip to main content
Log in

Quantitative fluorometric in-situ determination of netilmicin and 4 gentamicins on TLC-RP-layers

Quantitative fluorometrische in situ-Bestimmung von Netilmicin und 4 Gentamicinen auf DC-RP-Schichten

  • Original Papers
  • Pharmaceutical/Clinical Analyses
  • Published:
Fresenius' Zeitschrift für analytische Chemie Aims and scope Submit manuscript

Summary

This investigation describes a thin-layer chromatographic method for the quantitative determination of netilmicin and gentamicins C1, C1a, C2 and C2a in pharmaceutical preparations. The individual components are separated on C8 or C18 reversed phase layers with a mobile phase consisting of methanol and ammonia with added lithium chloride. After optimization of the post-chromatographic derivatization with 2,2-diphenyl-1-oxa-3-oxonia-2-boratanaphthalene (DOOB) quantitative determination takes place directly on the layer. The calibration curves are linear for netilmicin in the range 50–250 ng/zone and for the gentamicin components in the range 30–140 ng/zone (this corresponds to 100 to 400 ng/zone total complex). The determination limits per zone are 50 ng total gentamicin complex and 10 ng netilmicin per zone. No clean-up is required for analysis because of the great specificity of the derivatization reaction. The reproducibility of the method for independently carried out measurement series can be described by coefficients of variation between CV = ±1.7%–4.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Helwig H (1983) Dtsch Apoth Ztg 123 (1): 139–150

    Google Scholar 

  2. Buthe W (1972) PTA Prakt Pharm 8:366–370

    Google Scholar 

  3. Weinstein J (1963) J Med Chem 6:463–464

    Google Scholar 

  4. Testa R, Tilley BC (1979) Jpn J Antibiot 32:47–59

    Google Scholar 

  5. Lee MJ, Ryu DDY (1979) Misaengmul Hakhoe Chi 17:152–159

    Google Scholar 

  6. Shibata M (1980) Agric Biol Chem 44:2507–2509

    Google Scholar 

  7. Wagman GH, Marquez JA, Bailey JV, Cooper D, Weinstein J, Track R, Daniels P (1972) J Chromatogr 70:171–173

    Google Scholar 

  8. USP XXI

  9. Thomas AH, Tappin SD (1974) J Chromatogr 97:280–283

    Google Scholar 

  10. Freeman R, (1979) J Liq Chromatogr 2:1305–1317

    Google Scholar 

  11. Marples J, Oates MDG (1982) J Antimicrob Chemother 10:311–318

    Google Scholar 

  12. Weigand R, Coombes RJ (1983) J Chromatogr 281:381–385

    Google Scholar 

  13. Wright JJ (1976) J Chem Soc Chem Comm 6:206–208

    Google Scholar 

  14. Roth HJ (1984) Dtsch Apoth Ztg 124:677–684

    Google Scholar 

  15. Anhalt JP (1977) Antimicrob Agents Chemother 11:651–655

    Google Scholar 

  16. Peng G, Jackson GG, Chiou WL (1977) Antimicrob Agents Chemother 12:707–709

    Google Scholar 

  17. Bäck SE, Nilsson-Ehle I, Nilsson-Ehle P (1979) Clin Chem 25:1222–1225

    Google Scholar 

  18. Larsen NE, Marinelli K (1980) J Chromatogr 221:182–187

    Google Scholar 

  19. Kawamoto T (1984) J Chromatogr 305:373–379

    Google Scholar 

  20. Larson T, Gerding DN, Peterson LR, Eckfeldt JH (1982) Antimicrob Agents Chemother 21:399–401

    Google Scholar 

  21. Selepak ST, Witebsky FG, Robertson EA, Lowry JD (1981) J Clin Microbiol 13:742–749

    Google Scholar 

  22. Jansson L, Henning C (1982) Antimicrob Agents Chemother 22:1058–1060

    Google Scholar 

  23. Witebsky FG, Selepak ST (1983) Antimicrob Agents Chemother 23:172–174

    Google Scholar 

  24. O'Connell ME, Heim KL, Halstenson CE, Matzke GR (1984) J Clin Microbiol 20:1080–1082

    Google Scholar 

  25. Pohlod DJ, Saravolatz LD, Sommerville MM (1984) J Clin Microbiol 20:866–868

    Google Scholar 

  26. Ngui-Yen JH, Doyle PW, Smith JA (1984) J Clin Microbiol 20:962–965

    Google Scholar 

  27. Weber A, Smith AL, Opheim KE (1985) J Clin Microbiol 21:419–424

    Google Scholar 

  28. White LO, Bywater MJ, Reeves DS (1983) J Antimicrob Chemother 12:403–406

    Google Scholar 

  29. Borner K, Hartwig H, Lode H (1984) Fresenius Z Anal Chem 317:716–717

    Google Scholar 

  30. Strasburger CJ, Wood WG (1984) Fresenius Z Anal Chem 317:724

    Google Scholar 

  31. Hohaus E (1982) Fresenius Z Anal Chem 310:70–76

    Google Scholar 

  32. Hohaus E (1984) Bunseki Kagaku 33:E55-E60

    Google Scholar 

  33. Claas KE, Hohaus E (1985) Fresenius Z Anal Chem 322:343–347

    Google Scholar 

  34. Chalela G, Schwantes HO, Funk W (1984) Fresenius Z Anal Chem 319:527–532

    Google Scholar 

  35. Funk W (1984) Fresenius Z Anal Chem 318:206–219

    Google Scholar 

  36. Funk W (1984) Proceedings International Symposium Instrumental HPTLC, 2nd edn. Kaiser RE (ed) IFC, Bad Dürkheim, pp 281–311

    Google Scholar 

  37. Benson JR, Hare PE (1975) Proc Mat Acad Sci USA 72:619–622

    Google Scholar 

  38. Uchiyama S, Uchiyama M (1980) J Liq Chromatogr 3:681–691

    Google Scholar 

  39. Zennie TM (1984) J Liq Chromatogr 7:1383–1391

    Google Scholar 

  40. Wilson WL, Richard G, Hughes DW (1973) J Pharm Sci 66:282–284

    Google Scholar 

  41. Holzer A, Geimer G (1984) Fresenius Z Anal Chem 318:239–240

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Teilergebnis der Dissertation von F. R. Kunz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunz, F.R., Jork, H. Quantitative fluorometric in-situ determination of netilmicin and 4 gentamicins on TLC-RP-layers. Z. Anal. Chem. 329, 773–777 (1988). https://doi.org/10.1007/BF00556914

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00556914

Keywords

Navigation