Skip to main content
Log in

Molecular consequences of two formaldehyde-induced mutations in the alcohol dehydrogenase gene ofDrosophila melanogaster

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Adh fn23 andAdh fn24 are two formaldehyde-induced, homozygous-viable, alcohol dehydrogenase-null mutants that bear lesions in the gene tht codes for the alcohol dehydrogenase (ADH; EC 1.1.1.1) ofDrosophila melanogaster. Adh fn23 contains a 34-base pair deletion in the C-terminal coding region of the alcohol dehydrogenase structural gene. By immunological and molecular analysis, we show that the deletion shifts the translation reading frame and results in a prematurely truncated polypeptide product (10 amino acids shorter than wild type) that cross-reacts with antibody raised against ADH. The steady-state level of alcohol dehydrogenase mRNA present in this mutant is close (97%) to that in the wild type, but the steady-state level of alcohol dehydrogenase-like protein is 50% lower. Moreover, the rate of alcohol dehydrogenase synthesis inAdh fn23 flies is reduced to 60% of that found in the wild type. Hence both the rate of synthesis and the rate of degradation of alcohol dehydrogenase are affected. In contrast,Adh fn24 which contains an 11-base pair deletion in the N-terminal coding region of the ADH gene, synthesizes no immunodetectable protein, and the amount of alcohol dehydrogenase mRNA is less than half that of wild-type flies. As withAdh fn23, the deletion inAdh fn24 results in a change in the reading frame. UnlikeAdh fn23, however, nucleic acid sequence data indicate that polypeptide chain elongation can proceed for a considerable distance (over 130 amino acids) beyond the deletion. Based upon antigenic binding-site predictions, the resultant aberrant protein (projected 195 amino acids in length) would share few antigenic sites with the alcohol dehydrogenase from the wild type, which may account for the lack of immunoprecipitable material in this mutant. The contrasting effects these two deletions have on theDrosophila ADH mRNA levels and ADH protein levels are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adesnik, M. Salditt, M., Thomas, W., and Darnell, J. E. (1972). Evidence that all messenger RNA molecules (except histone messenger RNA) contain poly (A) sequences and that the poly(A) has a nuclear function.J. Mol. Biol. 7121.

    Google Scholar 

  • Auerbach, C. A., Moutschen-Dahmen, M., and Moutschen, J. (1977). Genetic and cytogenetical effects of formaldehyde and related compounds.Mutat. Res. 39317.

    Google Scholar 

  • Benyajati, C., Wang, N., Reddy, A. R., Weinberg, E., and Sofer, W. (1980). Alcohol dehydrogenase inDrosophila: Isolation and characterization of messenger RNA and cDNA.Nucleic Acids Res. 85169.

    Google Scholar 

  • Benyajati, C., Place, A. R., Powers, D. A., and Sofer, W. (1981). The alcohol dehydrogenase gene ofDrosophila melanogaster. Relation of intervening sequences to functional domains in the protein.Proc. Natl. Acad. Sci. USA 782717.

    Google Scholar 

  • Benyajati, C., Place, A. R., Wang, N., Pentz, E., and Sofer, W. (1982). Deletions at the splice sites in theAdh gene ofDrosophila.Nucleic Acids Res. 107261.

    Google Scholar 

  • Benyajati, C., Place, A. R., and Sofer, W. (1983). Formaldehyde induced mutants inDrosophila: Analysis at the molecular level.Mutat. Res. 1111.

    Google Scholar 

  • Bonner, W. M., and Stedman, J. D. (1978). Efficient fluorography of3H and14C on thin layers.Anal. Biochem. 89247.

    Google Scholar 

  • Chanet, R., and von Borstel, R. C. (1979). Genetic effects of formaldehyde in yeast. III. Nuclear and cytoplasmic mutagenic effects.Mutat. Res. 62239.

    Google Scholar 

  • Dottavio, M. D., and Ravel, J. M. (1978). Radiolabeling of proteins by reductive alkylation with [14C]-formaldehyde and sodium cyanoborohydride.Anal. Biochem. 87562.

    Google Scholar 

  • Firtel, R. A., and Lodish, H. F. (1973). A small nuclear precursor of messenger RNA in the cellular slime mold Dictyostelium discoideum.J. Mol. Biol. 79295.

    Google Scholar 

  • Fishbein, J. C., Place, A. R., Ropson, I. J., Powers, D. A., and Sofer, W. (1980). Thin-layer peptide mapping: quantitative analysis and sequencing at the nanomole level.Anal. Biochem. 108193.

    Google Scholar 

  • Garnier, J., Osguthorpe, D. J., and Robson, B. (1978). Analysis of the accuracy and implications of simple methods for predicting structure of globular proteins.J. Mol. Biol. 12097.

    Google Scholar 

  • Goldberg, D. (1980). Isolation and partial characterization of theDrosophila alcohol dehydrogenase gene.Proc. Natl. Acad. Sci. USA 775794.

    Google Scholar 

  • Hollocher, H., and Place, A. R. (1987). Reexamination of alcohol dehydrogenase structural mutants in Drosophila using protein blotting.Genetics 16 253.

    Google Scholar 

  • Humphries, K., Ley, T. J., Anagnou, N. P., Baur, A. W., and Nienhuis, A. W. (1984). Beta O-39 thalassemia gene: A premature termination codon causes beta-mRNA deficiency without affecting cytoplasmic beta-mRNA stability.Blood 6423.

    Google Scholar 

  • Kessler, S. W. (1975). Rapid isolation of antigens from cells with a staphylococcal protein A-antibody adsorbent: Parameters of the interaction of antibody-antigen complexes with protein. A.J. Immunol. 1151617.

    Google Scholar 

  • Kohli, J., and Grosjean, H. (1981). Usage of the three termination codons: Compilation and analysis of the known eukaryotic and prokaryotic translation termination sequences.Mol. Gen. Genet. 182430.

    Google Scholar 

  • Kyte, J., and Dolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein.J. Mol. Biol. 157105.

    Google Scholar 

  • Lindsley, D., and Grell, E. H. (1968). Genetic Variations ofDrosophila melanogaster, Carnegie Institution of Washington Publication No. 627.

  • Martin, P. F., Place, A. R., Pentz, E., and Sofer, W. (1985). UGA nonsense mutation in the alcohol dehydrogenase gene ofDrosophila melanogaster.J. Mol. Biol. 184221.

    Google Scholar 

  • Moerman, D. G., and Baillie, D. L. (1981). Formaldehyde mutagenesis in the nematodeCaenorhabditis elegans.Mutat. Res. 80273.

    Google Scholar 

  • Nienhuis, A. W., Anagnou, N. P., and Ley, T. J. (1984). Advances in thalassemia research.Blood 63738.

    Google Scholar 

  • Nishioka, H. (1973). Lethal and mutagenic action of formaldehyde in Hcr+ and Hcr strains ofEscherichia coli.Mutat. Res. 17261.

    Google Scholar 

  • O'Donnell, J., Gerace, L., Leister, F., and Sofer, W. (1975). Chemical selection of mutants that affect alcohol dehydrogenase inDrosophila. II. Use of 1-pentyne-3-ol.Genetics 7973.

    Google Scholar 

  • O'Donnell, J., Mandel, H. C., Krauss, M., and Sofer, W. (1977). Genetic and cytogenetic analysis of the Adh region inDrosophila melanogaster.Genetics 86553.

    Google Scholar 

  • Palmiter, R. D. (1974). Magnesium precipitation of ribonucleoprotein complexes. Expedient techniques for the isolation of undergraded polysomes and messenger ribonucleic acid.Biochemistry 133606.

    Google Scholar 

  • Pelham, H. R. B., and Jackson, R. S. (1976). An efficient mRNA-dependent translation system from reticulocyte lysates.Eur. J. Biochem. 67247.

    Google Scholar 

  • Pelliccia, J. G. (1980).Detection and Quantitation of Alcohol Dehydrogenase in Wild Type and Null Activity Mutants of Drosophila melanogaster Ph.D. thesis, Johns Hopkins University, Baltimore.

    Google Scholar 

  • Pelliccia, J. G., and Sofer, W. (1982). Synthesis and degradation of alcohol dehydrogenase in wild-type and Adh-null activity mutants ofDrosophila melanogaster.Biochem. Genet. 20297.

    Google Scholar 

  • Place, A. R., Benyajati, C., and Sofer, W. (1982). The molecular consequences of formaldehyde and ethyl methanesulfonate mutagenesis inDrosophila: Analysis of mutants in the alcohol dehydrogenase gene.In Elzinga, M. (ed.),Methods in Protein Sequence Analysis Humana Press, N.J.

    Google Scholar 

  • Rapoport, I. A. (1946). Carbonyl compounds and the chemical mechanism of mutation.Compt. Rend. Acad. Sci USSR 5465.

    Google Scholar 

  • Schimke, R. T. (1975). Properties and mechanisms of protein turnover.In Schimke, R. T., and Katunuma, N. (eds.),Intracellular Protein Turnover Academic Press, New York, p. 173.

    Google Scholar 

  • Schwartz, M. F., and Jörnvall, H. (1976). Structural analyses of mutant and wild-type alcohol dehydrogenases fromDrosophila melanogaster.Eur. J. Biochem. 68159.

    Google Scholar 

  • Spielman, H., Erickson, R. P., and Epstein, C. J. (1974). The production of antibodies against mammalian LDH-1.Anal. Biochem. 59462.

    Google Scholar 

  • Swenberg, J. A., Kerns, W. D., Mitchell, R. I., Gralla, E. J., and Pavkov, K. L. (1980). Induction of squamous cell carcinomas of the rat nasal cavity by inhalation exposure to formaldehyde vapor.Cancer Res. 403398.

    Google Scholar 

  • Takeshita, K., Forget, B. G., Scarpa, A., and Benz, E. J. (1984). Intranuclear defect in betaglobin mRNA accumulation due to a premature translation termination codon.Blood 6413.

    Google Scholar 

  • Thatcher, D. R. (1980). The complete amino acid sequence of three alcohol dehydrogenase allelenzymes (Adhnll, AdhS and AdhuF) from the fruitflyDrosophila.Biochem. J. 187875.

    Google Scholar 

  • Van Ness, J., Maxwell, I. H., and Hahn, W. E. (1979). Complex population of nonpolyadenylated messenger RNA in mouse brain.Cell 181341.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by Grants GM 28791 and ES 02920 and Contract EY-S-02-2965 from the Department of Energy to W.S., a grant from the Charles and Johanna Busch Memorial Fund to W.S., and Grant PCM-8110819 from the NSF and Department of Navy contract N00014-86-K-0696 to A.R.P.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Place, A.R., Benyajati, C. & Sofer, W. Molecular consequences of two formaldehyde-induced mutations in the alcohol dehydrogenase gene ofDrosophila melanogaster . Biochem Genet 25, 621–638 (1987). https://doi.org/10.1007/BF00556207

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00556207

Key words

Navigation