Advertisement

Fibre Chemistry

, Volume 21, Issue 4, pp 324–327 | Cite as

Measurement of degree of crystallinity of cellulosic and polyamide fibres from data from sorption experiments

  • S. F. Grebennikov
  • A. T. Kynin
  • L. E. Klyuev
  • Z. V. Antonova
Chemistry And Technology Of Man-Made Fibres
  • 67 Downloads

Conclusions

A rapid method has been worked out for measuring the degree of crystallinity of fibrous materials, which is based on a linear dependence of this quantity on the integral heat of sorption.

It has been suggested to carry out practical calculations within the framework of the theoretical probability model of sorption, which permits one to calculate the integral heat of sorption from a minimum amount of experimental material, or attended with calorimetric measurements.

Sorption constants and integral heats of water sorption have been given for a large set of hydrocellulose and polyamide fibres.

Keywords

Polymer Probability Model Linear Dependence Minimum Amount Theoretical Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    K. E. Perepelkin, Fibre Structure and Properties [in Russian], Khimiya, Moscow (1985).Google Scholar
  2. 2.
    L. S. Gerasimova, L. A. Gordeeva, et al., Effect of Low-molecular Compounds on the Properties PCA Yarns [in Russian], NIITÉKhIM, Moscow (1982).Google Scholar
  3. 3.
    M. Ya. Ioelovich, X-Ray Structural Analysis of Cellulose, Abstracts of Reports at the Conference “Methods of Cellulose Investigation,” Riga (1988), pp. 12–16.Google Scholar
  4. 4.
    L. V. Van Krevelen, Properties and Chemical Structure of Polymers [in Russian], Khimiya, Moscow (1976), p. 416Google Scholar
  5. 5.
    A. A. Askadskii and Yu. M. Matveev, Chemical Structure and Physical Properties of Polymers [in Russian], Khimiya, Moscow (1983), p. 248Google Scholar
  6. 6.
    M. Ya. Ioelovich, A. É. Kraitus, et al., Khim. Drev., No. 1, 31–37 (1982).Google Scholar
  7. 7.
    I. F. Kaimin', V. P. Karlivan, and M. Ya. Ioelovich, Izv. Akad. Nauk Latv. SSR, No. 8, 112–113 (1979).Google Scholar
  8. 8.
    N. P. Lits, L. N. Mizerovskii, et al., Vysokomol. Soed., Ser. B,24, No. 9, 645–647 (1982).Google Scholar
  9. 9.
    V. M. Irklei, T. P. Starunskaya, et al., Khim. Volokna, No. 4, 28–29 (1983).Google Scholar
  10. 10.
    É. Z. Fainberg and N. V. Mikhailov, Khim. Volokna, No. 3, 40–47 (1967).Google Scholar
  11. 11.
    S. Grebennikov, V. Serpinskii, et al., Khim. Ind. (Bulgaria),55, No. 7, 305–308 (1983).Google Scholar
  12. 12.
    A. V. Dumanskii and A. F. Nekryach, Kolloidn. Zh.,17, No. 3, 168–170 (1955).Google Scholar
  13. 13.
    S. F. Grebennikov and A. T. Kynin, Zh. Prikl. Khim.55, No. 10, 2299–2303 (1982).Google Scholar
  14. 14.
    V. N. Lebedeva and A. E. Chalykh, Izv. Vuzov, Ser. Khim. Khim. Tekhnol.,23, No. 10, 1268–1269 (1980).Google Scholar
  15. 15.
    R. Puffr and J. Šebenda, J. Polymer Sci., C, No. 16, 79–93 (1967).Google Scholar
  16. 16.
    J. Šebenda and R. Puffr. Coll. Czech. Chem. Commun.,29, 60–74 (1964).Google Scholar
  17. 17.
    L. P. Razumovskii, V. S. Markin, and G. E. Zaikov, Vysokomol. Soed., Ser. A,37, No. 4, 675–688 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • S. F. Grebennikov
  • A. T. Kynin
  • L. E. Klyuev
  • Z. V. Antonova

There are no affiliations available

Personalised recommendations