Journal of Materials Science

, Volume 20, Issue 7, pp 2639–2646 | Cite as

Transformation toughening and grain size control inβ″-Al2O3/ZrO2 composites

  • D. J. Green


In order to fabricate transformation-toughenedβ″-Al2O3 and optimize its mechanical and electrical properties it was found to be necessary to carefully control the particle size distribution of the starting powders and their mixing. The ionic resistivity of the composites depended primarily on the volume fraction of ZrO2. Additions between 10 and 20 vol% produced materials with ionic resistivities (300° C) between 6 and 10 Ωcm and eliminated exaggerated grain growth of theβ″-Al2O3. Comparison ofβ″-Al2O3 composites containing either tetragonal (t-) ZrO2 or cubic (c-) ZrO2 with the single phase material showed that the major strengthening mechanism is the reduction in critical flaw size. This occurred by the elimination of the flaw population associated with abnormally large grains. For maximum increases in fracture toughness and strength, however, the use of t-ZrO2 (transformation toughening) as a second phase is preferred.


Al2O3 Fracture Toughness Electrical Property Particle Size Distribution Single Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. G. Evans andA. H. Heuer,J. Amer. Ceram. Soc. 63 (1980) 241.Google Scholar
  2. 2.
    F. F. Lange, in “Fracture Mechanics of Ceramics”, Vol. 6, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1983) pp. 255–74.Google Scholar
  3. 3.
    A. G. Evans, Proceedings of Second International Conference on the Science and Technology of Zirconia, “Advances in Ceramics”, Vol. 12, edited by N. Claussen, M. Rühle and A. H. Heuer (American Ceramics Society, 1984).Google Scholar
  4. 4.
    F. F. Lange, B. I. Davis andD. O. Raleigh,J. Amer. Ceram. Soc. 66 (1983) 50.Google Scholar
  5. 5.
    L. Viswanathan, Y. Ikuna andA. V. Virkar,J. Mater. Sci. 18 (1983).Google Scholar
  6. 6.
    D. J. Green andM. G. Metcalf,Bull. Amer. Ceram. Soc. 63 (1983) 803.Google Scholar
  7. 7.
    L. C. Dejonghe, L. A. Feldman andA. Buechele,J. Mater. Sci. 16 (1981) 780.Google Scholar
  8. 8.
    R. H. Richman andG. J. Tennenhouse,J. Amer. Ceram. Soc. 58 (1975).Google Scholar
  9. 9.
    D. K. Shetty, A. V. Virkar andR. S. Gordon, in “Fracture Mechanics of Ceramics”, Vol. 4, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1978) pp. 651–65.Google Scholar
  10. 10.
    L. A. Feldman andL. C. Dejonghe,J. Mater. Sci. 17 (1982) 517.Google Scholar
  11. 11.
    A. G. Evans andE. A. Charles,J. Amer. Ceram. Soc. 59 (1976) 371.Google Scholar
  12. 12.
    A. G. Evans, in “Fracture Mechanics Applied to Brittle Materials”, edited by S. W. Frieman (American Society for Testing and Materials, Philadelphia, Pennsylvania, 1978) Tech. Publ. 678, pp. 112–35.Google Scholar
  13. 13.
    R. Landauer,J. Appl. Phys. 23 (1952) 779.Google Scholar
  14. 14.
    G. E. Youngblood, G. R. Miller andR. S. Gordon,J. Amer. Ceram. Soc. 61 (1978) 86.Google Scholar
  15. 15.
    D. C. Hitchock andL. C. Dejonghe,ibid. 66 (1983) 204.Google Scholar

Copyright information

© Chapman and Hall Ltd 1985

Authors and Affiliations

  • D. J. Green
    • 1
  1. 1.Structural Ceramics GroupRockwell International Science CenterThousand OaksUSA

Personalised recommendations