Journal of Materials Science

, Volume 20, Issue 1, pp 165–170 | Cite as

Photoluminescence and optical properties of Mg x Zn1−xTe alloys

  • F. El Akkad
  • S. Demian
  • J. Chevallier


The photoluminescence and optical properties of Mg x Zn1−xTe alloys have been studied in the composition range 0<x<0.48. The results are discussed taking into account the formation of band tails due to the alloying effect or random distribution of impurities. The role of residual defects in magnesium-rich alloys is emphasized. On the other hand, a preliminary investigation showed that it is possible to incorporate lithium by high-temperature diffusion in Mg x Zn1−xTe alloys without altering the magnitude or the homogeneity of the magnesium concentration. Evidence is obtained for an increased quantum efficiency after lithium doping.


Polymer Magnesium Lithium Optical Property Quantum Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. C. Guillaume, J. Chevallier, J. F. Rommeluere, G. Rouy andG. Revel,Rev. Phys. Appl. 11 (1976) 725.Google Scholar
  2. 2.
    G. A. Saum andE. B. Hensley,Phys. Rev. 113 (1959) 1019.Google Scholar
  3. 3.
    S. G. Parker, A. R. Reinberg, J. E. Pinnell andW. C. Holton,J. Electrochem. Soc. 118 (1971) 979.Google Scholar
  4. 4.
    J. Marine, T. Ternisien Douvillet, B. Schaub, A. Laugier, D. Barbier, J. C. Guillaume, J. F. Rommeluere andJ. Chevallier,J. Electr. Mater. 7 (1978) 17.Google Scholar
  5. 5.
    D. Barbier, B. Montegu andA. Laugier,Solid State Commun. 28 (1978) 525.Google Scholar
  6. 6.
    D. Barbier andA. Laugier,ibid. 23 (1977) 435.Google Scholar
  7. 7.
    A. Laugier, B. Montegu, D. Barbier, J. Chevallier, J. C. Guillaume andK. Somogyi,Phys. Status Solidi (b) 99 (1980) 319.Google Scholar
  8. 8.
    K. Somogyi, J. Chevallier, J. F. Rommeluere, T. Marine andB. Schaub,IEEE Trans. On Electron. Devices ED-26 (1979) 1198.Google Scholar
  9. 9.
    L. K. Vodopyanov, E. A. Vinogradov, M. N. Melnik, V. G. Plotnichenko, J. Chevallier andJ. C. Guillaume,J. de Physique 39 (1978) 627.Google Scholar
  10. 10.
    P. J. Dean, H. Venghans, J. C. Pfister, B. Schaub andJ. Marine,J. Luminesc. 16 (1978) 363.Google Scholar
  11. 11.
    N. Magnea, Thèse de 3ème cycle, Grenoble (1977).Google Scholar
  12. 12.
    H. Rodot,Compt. rend. contract no. 72.7.0089, CNRS Bellevue (1973).Google Scholar
  13. 13.
    F. J. Bryant andA. J. S. Baker,Phys. Status Solidi (a) 11 (1972) 623.Google Scholar
  14. 14.
    F. El Akkad, Thèse de Doctorat d'Etat (PhD Dissertation) Paris (1975).Google Scholar
  15. 15.
    Y. F. Tsay, S. S. Mitra andJ. F. Vetelino,J. Phys. Chem. Solids 34 (1973) 2167.Google Scholar
  16. 16.
    M. Culter andN. F. Mott,Phys. Rev. 181 (1969) 1336.Google Scholar
  17. 17.
    E. O. Kane,ibid. 131 (1963) 79.Google Scholar
  18. 18.
    V. L. Bonch-Bruevich, “Semiconductors and Semimetals”, Vol. 1, edited by R. K. Willardson and A. C. Beer (Academic Press, New York, 1966) p. 101.Google Scholar
  19. 19.
    J. Pankove,Phys. Rev. 140 (1965) A2059.Google Scholar
  20. 20.
    H. C. Casey Jr andF. Stern,J. Appl. Phys. 47 (1975) 631.Google Scholar
  21. 21.
    F. El Akkad,J. Electr. Mater. 7 (1978) 619.Google Scholar
  22. 22.
    F. El Akkad andH. Rodot,Cryst. Lattice defects 6 (1975) 7.Google Scholar
  23. 23.
    F. El Akkad,Phys. Status Solidi (b) 76 (1976) 85.Google Scholar
  24. 24.
    F. El Akkad andH. Rodot,J. Physique T25 (1974) C3–179.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1985

Authors and Affiliations

  • F. El Akkad
    • 1
  • S. Demian
    • 1
  • J. Chevallier
    • 2
  1. 1.Physics DepartmentNRCCairoEgypt
  2. 2.Laboratoire de Physique des SolidesCNRSMeudonFrance

Personalised recommendations