Journal of Materials Science

, Volume 7, Issue 3, pp 316–324 | Cite as

A metallographic study of superplasticity in a micrograin aluminium bronze

  • G. L. Dunlop
  • D. M. R. Taplin


The microstructures of micrograin Cu-9 to 10% Al-0 to 4% Fe alloys, which are superplastic at 800° C, have been determined. Metallographic studies after deformation at 800° C over a range of strain-rates encompassing the three stage strain-rate hardening behaviour common to superplastic materials show that in the low strain-rate range, below that for high values of the strain-rate sensitivity exponent (m), clumps of grains slide together as units with considerable flow in the matrix close to sliding interfaces. After deformation in this low strain-rate range there is no evidence for dislocation motion within the grains. With increasing strain-rate, through and beyond the strain-rate range where peak values ofm are recorded, evidence for dislocation motion steadily increases; the tendency for clumps of grains to slide together diminishes; and there is decreased flow in the matrix about the sliding interfaces. The strain-rate for maximumm shows a strong dependence on the proportion ofβ phase in the microstructure and the presence of iron which acts to refine the grain size. These observations are explained in terms of a flow mechanism whereby the high strain-rate sensitivity range occurs intermediate between a low strain-rate range, where sliding is accommodated by diffusion, and a high strain-rate range, where accommodation is by dislocation movement through the matrix.


Iron Grain Size Microstructure Strong Dependence Dislocation Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. H. Johnson,Metall. Rev. 15 (1970) 145.Google Scholar
  2. 2.
    G. J. Davies, J. W. Edington, C. P. Cutler, andK. A. Padmanabhan,J. Mater. Sci. 5 (1970) 1091.Google Scholar
  3. 3.
    J. Crane, ASM Conference, Philadelphia, 1969.Google Scholar
  4. 4.
    G. L. Dunlop andD. M. R. Taplin,J. Mater. Sci. 7 (1972) 84.Google Scholar
  5. 5.
    W. A. Backofen, I. R. Turner, andD. M. Avery,Trans. ASM 57 (1964) 980.Google Scholar
  6. 6.
    P. J. MacKen andA. A. Smith, “The Aluminium Bronzes” (Copper Development Association, London) 1966.Google Scholar
  7. 7.
    H. Sato, R. S. Toth, andG. Honjo,Acta Metallurgica 15 (1967) 1381.Google Scholar
  8. 8.
    J. R. Moon andR. D. Garwood,J. Inst. Metals 96 (1968) 17.Google Scholar
  9. 9.
    J. A. Mullendore andD. J. Mack,TMS AIME 212 (1958) 252.Google Scholar
  10. 10.
    B. M. Watts andM. J. Stowell,J. Mater. Sci. 6 (1971) 228.Google Scholar
  11. 11.
    J. Crane, G. L. Dunlop, E. Shapiro, andD. M. R. Taplin. To be published.Google Scholar
  12. 12.
    A. Ball andM. M. Hutchinson,Met. Sci. J. 3 (1969) 1.Google Scholar
  13. 13.
    D. Lee,Acta Metallurgica 17 (1969) 1057.Google Scholar
  14. 14.
    H. W. Hayden andJ. H. Brophy,Trans. ASM 61 (1968) 542.Google Scholar
  15. 15.
    H. W. Hayden, R. C. Gibson, H. F. Merrick, andJ. H. Brophy,ibid 60 (1967) 3.Google Scholar
  16. 16.
    E. H. Lee andE. E. Underwood,Met. Trans. 1 (1970) 1399.Google Scholar
  17. 17.
    A. Howie andP. R. Swann,Phil. Mag. 6 (1961) 1215.Google Scholar
  18. 18.
    P. C. J. Gallagher,Met. Trans. 1 (1970) 2429.Google Scholar
  19. 19.
    L. M. Clareborough,Phil. Mag. 13 (1966) 285.Google Scholar
  20. 20.
    A. Karim, D. L. Holt, andW. A. Backofen,TMS AIME 245 (1969) 1131.Google Scholar
  21. 21.
    D. Lee,Scripta Met. 3 (1969) 893.Google Scholar
  22. 22.
    W. A. Backofen, F. J. Azzarto, G. S. Murty, andS. W. Zehr, “Ductility”,ASM (1696) 279.Google Scholar
  23. 23.
    W. A. Backofen, G. S. Murty, andS. W. Zehr,TMS AIME 242 (1968) 329.Google Scholar
  24. 24.
    S. W. Zehr andW. A. Backofen,Trans. ASM 61 (1968) 300.Google Scholar
  25. 25.
    T. H. Alden,Acta Metallurgica 15 (1967) 469.Google Scholar
  26. 26.
    R. C. Gifkins, A. Gittins, R. L. Bell, andT. G. Langdon,J. Mater. Sci. 3 (1968) 306.Google Scholar
  27. 27.
    C. M. Packer, R. H. Johnson, andO. D. Sherby,TMS AIME 242 (1968) 2485.Google Scholar
  28. 28.
    E. W. Hart,Acta Metallurgica 15 (1967) 1545.Google Scholar
  29. 29.
    D. J. Dingley, Scanning Electron Microscopy 1970, (IIT Research Institute, Chicago, 1970) 329.Google Scholar
  30. 30.
    E. W. Hart,G.E. Research Report (1969) No. 69-C-029.Google Scholar
  31. 31.
    T. G. Langdon andR. C. Gifkins,Scripta Met. 4 (1970) 337.Google Scholar

Copyright information

© Chapman and Hall Ltd 1972

Authors and Affiliations

  • G. L. Dunlop
    • 1
  • D. M. R. Taplin
    • 1
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.Department of Mechanical EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations