Journal of Materials Science

, Volume 7, Issue 3, pp 298–302 | Cite as

High-pressure phase research on Nb2O5

  • S. Tamura


Experimental results indicate that the direct transitions from the H form to the T form and from the H form to the B form of Nb2O5 are possible under high pressures. Both highly pure and less pure reagents were used. The distinct TT form was obtained only when less pure reagents were used so that the TT form seems to be stabilised by means of trace impurities. Previously the TT form was indexed as having a pseudohexagonal unit cell. However, the present distinct TT form has a monoclinic unit cell,a=7.238Å,b=15.79Å,c=7.188Å,β=119°59′,V=711.7(Å)3. Eight molecules are contained per cell. Probably only B, T and H have stable regions; the other polymorphs of Nb2O5 may be metastable forms or forms stabilised by impurities.


Polymer High Pressure Stable Region Nb2O5 Direct Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Brauer,Z. anorg. Chem. 248 (1941) 1.Google Scholar
  2. 2.
    H. Schäfer, F. Schulte, andR. Gruehn,Angew. Chem. 76 (1964) 536.Google Scholar
  3. 3.
    H. Schäfer,Angew Chem. (Internat. Edit.)3 (1964) 511.Google Scholar
  4. 4.
    L. K. Frevel andH. W. Rinn,Analyt. Chem. 27 (1955) 1329.Google Scholar
  5. 5.
    F. Holtzberg, A. Reisman, M. Berry, andM. Berkenblit,J. Amer. Chem. Soc. 79 (1957) 2039.Google Scholar
  6. 6.
    F. Laves, R. Moser, andW. Petter, Naturwiss.51 (1964) 356.Google Scholar
  7. 7.
    F. Laves, W. Petter, andH. Wuif,ibid 51 (1964) 633.Google Scholar
  8. 8.
    A. Reisman andF. Holtzberg,J. Amer. Chem. Soc. 81 (1959) 3182.Google Scholar
  9. 9.
    N. Terao,Japan J. Appl. Phys. 2 (1963) 156.Google Scholar
  10. 10.
    Idem, ibid 4 (1965) 8.Google Scholar
  11. 11.
    H. Nowotny, F. Benesvsky, E. Rudy, andA. Wittmann, Monalsh.91 (1960) 975.Google Scholar
  12. 12.
    H. J. Goldschmit,J. Inst. Metals 87 (1958) 235.Google Scholar
  13. 13.
    M. W. Shafer andR. Roy,Z. Krist. 110 (1958) 241.Google Scholar
  14. 14.
    B. M. Gatehouse andA. D. Wadsley,Acta Cryst. 17 (1964) 1545.Google Scholar
  15. 15.
    R. Gruehn,J. Less-Common Metals 11 (1966) 119.Google Scholar
  16. 16.
    S. Andersson,Z. Anorg. Chem. 351 (1967) 106.Google Scholar
  17. 17.
    H. Schäfer, R. Gruehn, andF. Schulte,Angew. Chem. 78 (1966) 28.Google Scholar
  18. 18.
    As cited by Schäferet al [17].Google Scholar
  19. 19.
    A. Taylor andN. J. Doyle,J. Less-Common Metals 13 (1957) 331.Google Scholar
  20. 20.
    H. Schäfer, R. Gruehn, andF. Schulte,Angew. Chem. (Internat. Edit.)5 (1966) 40.Google Scholar
  21. 21.
    W. Mertin, S. Andersson, andR. Gruehn.J. Solid State Chem. 1 (1970) 419.Google Scholar

Copyright information

© Chapman and Hall Ltd 1972

Authors and Affiliations

  • S. Tamura
    • 1
  1. 1.National Institute for Researches in Inorganic MaterialsTokyoJapan

Personalised recommendations